《研究人员利用离子辐照技术设计纳米粒子,推动清洁能源和燃料转换的发展》

  • 来源专题:新能源汽车
  • 编译者: 王晓丽
  • 发布时间:2023-11-28

  • 研究人员利用离子辐照技术制造纳米粒子,推动清洁能源和燃料转换的发展

    作者:麻省理工学院材料研究实验室 Elizabeth A. Thomson

    艺术家通过金属溶解和离子辐照两种技术创造出的不同成分的纳米粒子。不同的颜色代表不同的元素,如镍,这些元素可以植入外溶解的金属颗粒中,以调整颗粒的成分和反应活性。

    麻省理工学院的研究人员及其同事展示了一种方法,可以精确控制纳米粒子的大小、成分和其他特性,这些纳米粒子是各种清洁能源和环保技术反应的关键。他们利用离子辐照技术实现了这一目标。离子辐照是一种用带电粒子束轰击材料的技术。用这种方法制造的纳米粒子比传统方法制造的纳米粒子性能更优越。

    研究小组在《能源与环境科学》(Energy & Environmental Science)杂志上写道:"通过离子与物质的相互作用,我们成功地设计了外溶纳米粒子的大小、成分、密度和位置。“

    例如,他们可以使颗粒的直径大大缩小,最小可达 20 亿分之一米,远远小于仅用传统热溶解方法制造的颗粒。此外,他们还能通过照射特定元素来改变纳米粒子的成分。他们用一束镍离子将镍植入外溶解的金属纳米粒子中,证明了这一点。因此,他们展示了一种直接、方便的方法来设计外溶解纳米粒子的成分。

    研究小组还发现,离子辐照会在电极本身形成缺陷。这些缺陷提供了更多的成核点,或者说为溶出的纳米粒子提供了生长的场所,从而提高了纳米粒子的密度。

    辐照还可以实现对纳米粒子的极端空间控制。"王说:"因为你可以聚焦离子束,你可以想象你可以用它'写'出特定的纳米结构。"我们做了一个初步的演示,但我们相信它有潜力实现控制良好的微观和纳米结构"。

    研究小组还表明,他们用离子辐照法制造的纳米粒子比传统的热溶解法制造的纳米粒子具有更高的催化活性。



    参考文献:Jiayue Wang et al, Ion irradiation to control size, composition and dispersion of metal nanoparticle exsolution, Energy & Environmental Science (2023). DOI: 10.1039/D3EE02448B

相关报告
  • 《利用生物纳米粒子携带技术可以提高杀虫剂的效率》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:李楠
    • 发布时间:2017-11-28
    • 寄生型线虫以土壤深处的植物根部为食,破坏植物根部,从而大大削弱植物吸收水和养分的能力。线虫可侵食各种农作物,包括玉米、小麦、咖啡、大豆、马铃薯、以及各种果树,每年全球因线虫病造成的农作物损失高达1,570亿美元。传统的杀虫剂无法抵达植物根部,并且杀虫剂在土壤中的散布效果很差。另外,农田施用大量化学杀虫剂,可能增加食品中化合物浓度以及化学制剂溢流量,而且会损害其他环境要素。 为了有效降低寄生型线虫对于农作物的影响,美国凯斯西储大学(Case Western Reserve University)的研究人员将药物输送技术应用到农业领域。他们利用生物纳米粒子——烟草轻绿花叶病毒纳米粒子(Virus Nanoparticle),携带线虫杀剂于土壤表面,使线虫杀虫剂抵达作物根部。纳米粒子的使用提高了药物在土壤中的扩散效率,降低了药物被过滤和溢流的风险,减少了农产品和谷物中的化学制剂残留量、降低了农作物病虫害防治的成本。该研究论文发表在美国化学会的期刊《纳米》(Nano)上。 凯斯西储大学生物医药工程专业的博士研究生保罗·查理奥(Paul Chariou)与凯斯西储大学医药系生物材料学教授尼古拉·斯泰因梅兹(Nicole Steinmetz)一起合作。查理奥表示:“烟草轻绿花叶病毒(TMGMV)会自动聚集成一个300 nm长、18 nm宽的管状结构,中间有一个4纳米宽的中空管道。这种病毒可感染番茄、茄子和其他茄属植物,但是对近3 000种其他可感染线虫病的植物不构成威胁。因此,这种植物病毒纳米粒子的特性为提高化学杀虫剂的作用奠定了基础。 在实验室条件下,研究人员利用一种叫作结晶紫(Crystal Violet)的线虫杀剂,对这种植物病毒形成的纳米粒子的作用过程进行了测试。结晶紫一直被用来杀死皮肤上的线虫,但还未在农业领域使用过。研究人员利用表面化学(Surface Chemistry)将带正电的结晶紫分子装入带负电的病毒纳米分子管道中,每个病毒粒子携带约1,500个结晶紫分子,在实验室环境中模拟pH值为5的作物土壤。施放病毒粒子以及病毒粒子在土壤中扩散的过程中,线虫杀剂一直未脱落。到了作物根部,线虫杀剂逐渐从病毒粒子中扩散开来。查理奥表示,“温度越高、酸碱度更低的土壤会使这种化学制剂施放得更快。”另外,研究人员还注意到,水晶紫在线虫肚内被释放,并杀死线虫。 为了进一步验证该纳米颗粒的杀虫效果,科学家利用培养液中的秀丽隐杆线虫(Caenorhabdiiselegans)进行实验。最终实验结果显示,注入药物的病毒纳米粒子药物随着时间推移从其载体中扩散开来,并与线虫接触,最终线虫被杀死。更重要的是,在施于土壤表面时,携带线虫杀剂的病毒粒子,其散布效果更佳,更多的杀剂分子可用来在植物根部杀死线虫。 目前,查理奥和斯泰因梅兹使用经批准用于农作物的化学杀虫剂对这一投放系统进行测试,并建立电脑模型以便更好地了解纳米粒子在土壤中的扩散能力,并最终对其进行优化。 (编译 李楠)
  • 《六方氮化硼纳米粒子修饰的储氢多壁碳纳米管》

    • 来源专题:可再生能源
    • 编译者:董璐
    • 发布时间:2015-07-29
    • 氢被认为是最有发展前景的清洁能源载体,因为它的丰度,环境友好性和高转换效率。然而,开发安全,质量小,具有高成本效益的储氢材料是一个最具有挑战性的障碍,即氢作为燃料的广泛使用的障碍。目前的工作报告针对储氢性能的多壁碳纳米管(MWCNT)/六角氮化硼(h-BN)纳米复合材料(碳纳米管/ h-BN),另外对超声波处理的方法是采用多壁碳纳米管/ h-BN纳米复合材料的合成。加氢工艺是被用来分析样品在不同阶段的实验,内容包括表征技术,如X-射线衍射(XRD),显微拉曼光谱,傅立叶变换红外光谱(FTIR),扫描电子显微镜(SEM),能量色散X射线光谱(EDX),CHN元素分析和热重分析(TGA)。研究也证实了所制备的氢存储介质将有效地在氢燃料经济的领域。