《古土壤中的植物根》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2016-09-01
  • Plants -- even relatively small ones -- played a crucial role in establishing a beachhead for life on land, according to recent work by an international team from China, the U.S., the U.K., and the University of Saskatchewan.

    The team, led by paleobiologist Jinzhuang Xue from Peking University in Beijing, looked at paleosols -- ancient soils that have turned to stone over millions of years -- from the Xujiachong Formation of Yunnan, China. The site is unusual in that it has preserved traces of rhizomes, that is the underground systems of plants, that grew there 410 million years ago.

    Team member Jim Basinger, a paleobiologist at the U of S, explained that below-ground traces of plant life are not often preserved in the geological record since soils are prone to erosion and disturbance over time.

    "Soils are subject to a lot of reworking by physical processes such as erosion and redistribution of sediments, as well as biological processes like invertebrates digging through them," he said. "Rather than protecting the remains of plants, soil environments actually promote destruction of plant remains."

    The Yunnan site is doubly unusual in that evidence of both rhizomes and above-ground stems of the plant were preserved.

    The team found that early in the history of Earth's terrestrial biosphere, a small plant called Drepanophycus, similar to modern club mosses, was already deeply rooted. This kept soils from washing away and even allowed build up as the resilient above-ground parts of the plants caught silt during floods. These plants -- typically a metre long at most -- helped form deep, stable soils where other plants could thrive.

    "Rhizomes have been around for a long time, but their role in stabilizing sediment has not been recognized, since they have generally been assumed to be shallow or surficial," Basinger said, explaining that the Yunnan paleosols show rhizomes extending deeply into the soil -- something that was assumed to have not happened until much later, when trees appeared.

    "This effect was a feature of rhizomes of small and non-woody plants at a time early in the colonization of land," Basinger said, adding this would have paved the way for more complex forest ecosystems to follow.

    These ancient groves would have looked quite alien to modern eyes. Drepanophycus was a lycopsid, one of the oldest lineages of land plants. Descendants of these early lycopsids grew many metres tall, covering vast tracts of land and sharing the landscape with tree ferns and primitive woody plants to form early forests, long before forests familiar to us would evolve. Lycopsids live on today as the diminutive club mosses.

    The research team's findings are featured as the cover article of the August 23 issue of the Proceedings of the National Academy of Sciences (PNAS).

  • 原文来源:;https://www.sciencedaily.com/releases/2016/08/160830141222.htm
相关报告
  • 《探寻植物中的药物》

    • 来源专题:重大新药创制—研发动态
    • 编译者:杜慧
    • 发布时间:2014-10-17
    • 止痛药曲马多不是由植物制造的,尽管去年发现这种药物居然存在于喀麦隆植物的根部 (乌檀属植物)。来自德国多特蒙德技术大学的Michael Spiteller 和他的团队考查分析了位于喀麦隆的植物、水和土壤样品并为了真实性走访了当地的居民。北部偏远地区的农民将曲马多喂食给牛,然后曲马多及其代谢产物随牛的粪便进入土壤和水。之后这种止痛药又被植物的根部吸收。
  • 《植物对土壤淹水的感知与反应》

    • 来源专题:土壤、生物与环境
    • 编译者:李卫民
    • 发布时间:2016-09-18
    • While we already knew that plant roots were capable of sensing many individual soil characteristics (water, nutrients and oxygen availability), we did not have any understanding of how they integrated these signals in order to respond in an appropriate way. Researchers from CNRS and INRA have just discovered a mechanism that allows a plant to adjust its water status and growth according to different soil flooding conditions. The results of this study, published on 15 September 2016 in the journal Cell, describe how roots sense and respond to soil oxygen and potassium levels jointly, so as to change their water uptake capacity. Aside from their scientific importance, these findings could make it possible to optimize crop flood tolerance. Although hidden from view, roots are essential for plant growth and survival. Their growth and branching in the soil allows the plant to take up the water and nutrients it needs. This underground activity requires energy and, therefore, a high respiration rate in the roots, which uses the oxygen present in soil pores. If the soil becomes waterlogged, an oxygen deficit can develop because oxygen diffuses poorly in water, putting a severe stress on the roots and the plant as a whole. This reduces root water permeability in many plants. Plants growing in flooded soil can therefore suffer from reduced water content and their leaves wilt -- a paradox agronomists are familiar with. By using different lines of model plant Arabidopsis thaliana, researchers from the Biochimie et physiologie moléculaire des plantes laboratory (CNRS/INRA/Université Montpellier/Montpellier SupAgro) and Institut Jean-Pierre Bourgin (INRA/AgroParisTech/CNRS) identified a gene that controls root water permeability and which is influenced jointly by soil oxygen and potassium levels. Named HCR1, this gene reduces water entry into the roots when there's a lack of oxygen, but only when the soil is also rich in potassium, a mineral salt essential for plant growth. In fact, such conditions favor better plant recovery after flood conditions have ceased. The HCR1 gene actually also sets off a whole series of metabolic "survival" reactions that contribute to plant resilience. Once the soil is reoxygenated, the plant rehydrates its leaves and will grow more than if it had previously been deprived of potassium. These findings are not only important from a fundamental scientific point of view, but also open new avenues for agronomy. Plant water use and root performance are key targets for plant breeders. In nature, however, plants are never exposed to only one stress at a time, so breeders have also taken an interest in the plants' capacity to resist multiple environmental stresses. The identification of this mechanism linking oxygen availability, mineral levels and root water permeability is thus an important step forward for agronomy. This mechanism is a promising target for future plant improvement.