《混合氧化钛/聚合物两亲性纳米材料,控制尺寸,用于药物包封和递送》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-11-20
  • 本工作描述第一次混合药物的合成量加载二氧化钛/两亲性聚合物纳米颗粒的可控大小利用一个简单的和可再生的溶胶-凝胶过程,包括钛(IV)/丙酮的形成含氧的混合有机复杂之后,其与一个两亲性聚(环氧乙烷)量b聚(环氧丙烷)嵌段共聚物在丙酮和水nanoprecipitation必经阶段。混合纳米粒子的大小取决于复杂的老化过程,例如混合纳米粒子的直径在228到53纳米之间,分别为老化1天和36天(动态光散射)。此外,由于在表面涂有共聚物的聚(环氧乙烷)块,它们在水中表现出优异的物理稳定性。相反,无聚合物TiO2颗粒大且沉淀快。将疏水药物模型硝唑尼德与前驱体溶液结合,可得到混合纳米颗粒,其含量为12.9% w/w,并在双峰剖面下释放。通过高分辨率透射电子显微镜(Titan³Themis G2 300)分析,揭示了这些新型杂交体的多孔非晶纳米结构,以及药物和共聚物在纳米颗粒体中的共聚。最后,在超声作用下,我们的混合纳米粒子在体外产生活性氧,为其在声动力和药物释放治疗中的应用铺平了道路。

    ——文章发布于2018年11月15日

相关报告
  • 《纳米材料符合斑马鱼:毒性评估和药物递送应用。》

    • 来源专题:生物安全
    • 编译者:张虎
    • 发布时间:2019-11-20
    • 随着用于各种应用的工程纳米材料的迅速发展,迫切需要用于评估纳米材料对环境和人类安全的潜在危害作用的体内毒理学研究。斑马鱼由于其高繁殖力,成本效益,特征明确的发育阶段,光学透明性等优点,长期以来一直被认为是化学物质和污染物生物安全性评估的“黄金标准”。因此,斑马鱼具有高通量纳米毒性筛选的巨大潜力。在这篇综述中,我们总结了斑马鱼中不同纳米材料的体内毒理学概况,包括Ag纳米颗粒(NPs),CuO NPs,二氧化硅NPs,聚合物NPs,量子点,纳米级金属有机骨架等,并着重于如何理化这些纳米材料的特性(例如尺寸,表面电荷和表面化学性质)影响其生物安全性。此外,我们还报告了使用斑马鱼作为模型生物进行治疗评估,生物分布追踪和负载药物控释的纳米药物体内递送的最新进展。还讨论了斑马鱼模型的局限性和特殊考虑。总体而言,斑马鱼有望成为纳米毒性和药物传递评估的高通量筛选平台,这可能会指导安全纳米材料和更有效的纳米药物的设计。
  • 《纳米聚合物用于智能药物传输系统》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-05-12
    • 聚合物材料已经彻底改变了生物材料的世界。由于其优越的性能,大量的工作已被做集成聚合物纳米粒子与智能药物传输系统。 聚合物在药物传递中的概述 聚合物材料具有多种特性,使其成为理想的生物应用材料,特别是在药物传递系统中。这些材料除了相对容易设计和制备外,还具有良好的生物相容性和生物计量性能。当聚合物与药物传递系统结合时,已经证明了其独特的能力,能够有效地将治疗药物传递到指定的目标组织。 聚合物人们 最近的一些研究工作涉及到用于药物传递的聚合物纳米颗粒,重点是将这些材料用作药物载体。当用作纳米载体时,天然、半合成和合成性质的聚合物材料被称为球体和/或胶囊。与任何智能药物递送系统一样,聚合物纳米载体已被证明能够提供疏水药物的位点特异性靶向,同时提高药物的生物利用度和控释度。 在已被研究的各种基于纳米技术的系统中,聚合物纳米载体引起了相当大的关注。科学家们已经成功地控制了聚合纳米载体的核-壳结构,使其既能封装药物,又能将药物与核结合。 聚合物纳米载体不仅在健康组织和被包裹药物之间提供了保护屏障,而且改善了药物的药代动力学,增强了被包裹药物直接进入肿瘤的积累。 中枢神经系统障碍 血脑屏障是由与中枢神经系统内皮细胞紧密连接形成的一种物理屏障,控制和限制物质进入大脑的通道。虽然血脑屏障可以保护大脑免受病原体和潜在的神经毒素的侵袭,但它也极大地限制了治疗药物进入大脑治疗中枢神经系统疾病的途径。 为了克服这些挑战,人们研究了几种不同类型的纳米颗粒载体,其中包括金属、聚合物、脂质和靶向纳米颗粒载体。 与金属纳米颗粒相比,聚合物纳米颗粒更柔软、更灵活、密度更低,这使得这些颗粒在治疗性药物封装时更具延展性。 聚合物纳米粒子的大小、表面电荷和纵横比等各种性质可以改变,以满足各种药物的需要。为了穿过血脑屏障,聚合物纳米颗粒要经历一个称为内吞作用的过程,这个过程涉及到纳米颗粒被接受细胞的细胞膜吞噬。 一些研究也研究了不同的方法,例如添加内源性物质使聚合纳米载体的表面功能化,以进一步增强封装药物的位点特异性递送到大脑。 口服给药 口服给药是最简便的给药方法之一。这种方法不仅对患者无痛,而且是一种成本效益高的解决方案,具有有限的无菌限制,因此可以很容易地生产。 不幸的是,口服给药往往会导致药物的生物利用度较差,这是由于药物在酶环境(如胃内环境)中的水溶性、膜渗透性和稳定性。因此,这些限制限制了口服药物的种类,当这些药物必须通过其他方法,如静脉注射或腹腔注射时,这就导致了患者依从性差。 已经开发了几种不同的聚合物纳米技术来促进各种药物的口服,其中包括化疗药物、单链RNA (siRNA)和用于治疗炎症性肠病的小分子药物,以及用于糖尿病患者的胰岛素。 尽管这些研究仍处于临床前的发展阶段,但它们已经显示出了巨大的临床应用潜力。