《郑小雨团队突破晶格局限3D打印压电智能材料》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-01-22
  • 压电材料是受到压力作用时会在相对表两端面间产生出现电压的晶体材料。 压电材料存在于现有各种传感器当中,在换能器,传感器,驱动器,声纳,手机 和 机器人等方面有普遍应用。

    1880年,法国物理学家P. 居里和J.居里兄弟发现,把重物放在石英晶体上,晶体某些表面会产生电荷,电荷量与压力成比例。利用压电材料的这些特性可实现机械振动(声波)和交流电的互相转换。 打火机的点火装置,就是由压电陶瓷受压力尖端放电产生。

    压电效应的产生是晶胞中正负离子在外界条件作用下出现的相对位移使正负电荷中心不再重合,导致晶体发生宏观极化。 压电电荷的流动方向取决于并遵循其陶瓷和晶体材料的晶格排列。其电压输出特性、压电系数便局限于压电材料本身的空间晶格排列。所有压电传感器,便需要特定的工艺制成片状,分别制成阵列,安装于需要传感的物体表面。因此,压电材料的难加工,脆性,重量,设计和操纵的难度是本领域的一大挑战。

    为解决上述上述挑战,位于美国东部的弗吉尼亚理工学院的Xiaoyu (Rayne) Zheng 郑小雨教授及其实验室博士团队首次打破这一局限,提出可任意设计可快速打印的压电三维材料,实现电压在任意方向可被放大,缩小,及反向的特性。 其成果由Huachen Cui (崔华晨), Ryan Hensleigh, Desheng Yao (姚德圣)等于2019年1月21日,在《Nature Materials》名为 “Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response” 的文章中发表。

    他们的设计方案正来源于利用压电效应产生的晶格原理并打破晶格的局限性,通过三维几何构型在二维投影面的投影的分布,巧妙的设计出在各个方向具有不同压电输出的人工压感结构 (图1)。该设计理念巧妙的联想于人们熟悉的影子木偶游戏。 该单元人工晶格结构,通过排列组合,构成了三维桁架式立体结构。通过设计和机电耦合有限元计算,实现在三个坐标方向上具有不同的对称性从而产生任意压电系数空间方向张量,实现远超过晶体本身的对称分布。他们通过使用不同连接度的设计单元进行组合, 还可使一完整结构同时具有不同的刚度和强度特性,实现力电多功能压电耦合材料。

    多功能柔性可穿戴智能材料

    通过电压激活后,该团队设计和制造出了一系列新型智能材料。该三维材料可具有任意形状,任意内部结构复杂度,并且每一个节点,单元和材料本身任意部位均具有压电感应功能,无需任何附加传感器即可实现电压输出。 该团队开发了该材料的多种潜在应用,他们做出了柔性压电材料,将材料附着在任意曲面上探测压力,将材料打印成指环感应手指弯曲力。 同时他们打印出轻质,坚硬的吸能材料,该压电材料可实时探测到表面受到的冲击同时将吸入的能量实时检测出。

    自感应吸能材料及护甲

    由于这种智能材料各个部位均具有压电感应,其打印制成的三维结构将无需任何附加传感器,并探测出任意位置的压力或震动。 为实现这一特性,该团队打印出智能桥梁结构,该结构,在无任何附加传感器条件下,实现灵敏探测任意位置上的扰动和撞击。而在现有传感技术和结构损伤检测当中,则需要在各个位置上布满大量的压电传感器来实现。现有传感器技术中,对于复杂结构的测量,则需通过复杂算法优化计算,最终来决定传感器阵列的布置。这种自感应三维材料,则通过任意部位的压电结构材料,首次解决了这一难题 (图4)。

    图4 智能压电桥梁绗架结构

    矢量传感领域

    通过人工晶格设计制成的压电超材料,可以很灵巧的实现矢量探测传感功能。通过排列组合预先设计的压电系数,该团队可将不同的电压符号作为二维码,来实现任意位置机械波和力的大小,方向自行测量, 图5。该团队进一步展示了压电超材料的功能设计及其自行压力传感器的功能展示。 该团队并展望其在矢量传感器,水下探测,生物及汽车安全防护传感器均可得到应用。

    增材制造及超材料领域

    微筑超材料是自2014 年以来新型的材料领域, 通过设计材料微纳米三维几何构架,并通过高精度3D打印制成 超轻质材料,其密度是水密度的1/100一下,同时具有比石墨烯空气胶,碳纳米管空气胶高达几个数量级的硬度。早在2014 年,曾就职于美国能源部劳伦斯利弗摩尔国家实验室的郑小雨,连同Christopher Spadaccini, 合作者MIT 的Nicholas Fang及合作者共同开发了超轻超硬的超材料,Zheng, X, et al., Ultralight Ultrastiff Mechanical Metamaterials, Science, 20 Jun 2014 。

    他们将微筑材料通过3D打印光固化制成金属,陶瓷及有机材料,展示了其超轻,超硬的特性。该研究曾在2015年麻省理工科技评论被评为十大技术突破之一。

    2016年,加入弗吉尼亚理工学院的郑小雨又将超材料扩展到大面积,多尺度领域,开发出了大面积增材制造的多层级尺度金属超材料,将尺度范围扩大到七个数量级,同时涵盖百万个微纳米绗架单元,其结果发表于 2016 年的 Nature Materials 当中。Zheng, X, et al., Multi-scale metallic metamaterials, Nature Materials, 18 July 2016

    郑小雨教授的团队,在这篇文章中,首次将机械超材料赋予智能化,将其所有力学特性传递到电压输出,拓展出新的机电耦合超材料。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=405494
相关报告
  • 《突破 | 利用3D打印技术实现定制化MEMS器件的低成本生产》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-11-21
    • 瑞典皇家理工学院的研究团队设计了一种低成本高收益的专用于制造微机电系统(MEMS)的3D打印技术,它克服了传统MEMS器件制造的局限性,有望实现定制化MEMS器件的经济高效生产。通过该系统能够小批量生产定制设计的MEMS设备,以用作微型机器人、智能导航、飞行器设计等领域的传感器。 尽管通过大规模半导体制造技术可以高效地大批量生产MEMS器件,但由于制造工艺开发和器件设计优化的启动成本较高,使得中小型批量制造MEMS具有一定挑战性。因此,领导该研究的Frank Niklaus教授表示,工程师通常需要在非最优的现成MEMS设备和难以承受的启动成本之间做出抉择。而且传统的制造工艺开发和设备设计优化的成本不会因为小批量而降低。 图 一个3D打印的MEMS单元被放在一枚硬币旁边 该团队利用双光子聚合结合金属蒸发工艺制造了一种应变传感器,并展示了一种3D打印的功能性MEMS加速度计。它表征了加速度计随时间变化的响应度、谐振频率和稳定性。测试结果表明,这种3D打印方法可以有效地制造各种定制设计的MEMS器件。 双光子聚合过程,产生了小至几百纳米,但无法感知的高分辨率物体。为了形成转换元件,研究人员使用了一种遮蔽技术,其工作原理类似于模板。在3D打印的结构上,研究人员制作了具有T型横截面的特征,它功能就像一把伞。当从3D打印结构上方的某个点沉积金属时,受到这种“保护伞”保护的T型特征的侧面没有被涂覆金属。因此,T顶部的金属与结构的其余部分绝缘。 研究人员利用该方法,通过商业3D打印设备在短短几个小时内就制造了大约12个定制设计的MEMS加速度计。这种3D打印方法可以用于MEMS器件的原型制作,并以更加经济的方式每年生产数千万个MEMS传感器。 Niklaus强调,该方法突破了传统MEMS的生产极限,因为如果使用传统半导体技术来制造一款MEMS产品的成本在数十万美元左右,而且生产周期通常需要几个月甚至更长。但他们研发的新型3D打印技术不仅成本低,而且大大压缩了生产时间,在未来有望改变MEMS和传感器制造的游戏规则。 该方法可以用于制造那些需要定制的昂贵设备,比如飞机加速度计和工业机械振动传感器。它还可以应用于各种MEMS传感器,比如压力传感器,陀螺仪和流量传感器等。其他可以从该技术中受益的小批量产品包括机器人、工业工具和风力涡轮机的运动和振动控制单元。 此外,3D打印还可以为MEMS传感器实现复杂的几何形状,而且目前通过传统的硅微加工无法实现。研究人员通过将遮蔽元件,与定向材料沉积相结合来,选择性地功能化3D打印MEMS结构的表面的这种思路是通用的,促进了创新设计和各种传感器集成。 3D打印大大缩短了MEMS器件设计和制造的间隔时间,使得研究人员能够在几个小时内评估设备的性能,并对其进行优化。据研究人员称,从工业角度来看,与传统维微纳制造技术相比,3D打印可以显著降低中小批量定制MEMS器件的启动成本。 Niklaus 认为3D打印的可扩展性不仅仅是MEMS生产的优势,而且使其他类型的定制设备的制造成为可能。
  • 《华人团队研发3D打印不锈钢获突破》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-12-21
    • 人民网斯德哥尔摩12月19日电 近日,英国伯明翰大学在材料科学顶级期刊Materials Today上发表了3D打印不锈钢材料的论文。产业化道路上长期困扰科研人员的难题。该成果是由瑞典斯德哥尔摩大学、英国伯明翰大学和浙江大学联合组成的一个跨国界跨学科的科研团队研发而成。国家“相关人才计划”特聘专家沈志坚是斯德哥尔摩大学团队的主要负责人。 “3D打印原理貌似简单,要想实现产业化,却有很多技术问题有待解决,其中一个主要挑战就是打印出来材料的质量稳定性问题。简单地说,就是打印的部件可不可靠,能不能用,会不会出问题?” 3D打印是全球范围高技术竞争的一个热点,它制约着以数字化为基础的"工业4.0”以及 “智慧制造”的发展进程。普遍认为,3D打印出的材料性能不如传统锻造甚至于铸造的材料。但是,此次研究成果显示其以点线面体层层叠加形式构建材料的过程完全颠覆了以往的材料制造方法,能制造出使用传统方法难以制造甚至于无法制造的零件,大大增加了设计的自由度,打印出的不锈钢性能不仅远远好于锻造的钢材,还“顺带”解决了材料学的基础问题。 谈到和中国团队的联合研发,沈志坚表示:“中国的优势在于有很多的机构和大量的研究人员,有巨大的潜在市场。通过分工合作,发挥合众优势,中国完全有可能弯道超车,走到国际前沿。”“增材制造的原理不难理解,也一点不新,古代大器型陶瓷器,如兵马俑,都是通过堆泥的方式制造的,先人使用的就是增材制造原理,将工匠的双手换成数控机械臂就是现代版的增材制造了。”(王文)