《长沙理工大学科研团队取得新材料突破性进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-02-15
  • 锂离子电池富镍层状正极材料因可逆容量高、成本低等优点被认为是最有希望的下一代锂离子动力电池正极材料,然而该材料还存在界面稳定性差、二次颗粒内部结构衰退等问题亟待解决。

    近日,我校材料科学与工程学院李灵均副教授团队与厦门大学张桥保助理教授、美国阿贡国家实验室陆俊教授、内布拉斯加大学林肯分校、布鲁克海文国家实验室等海内外团队合作,在高能量密度锂离子电池双重修饰富镍正极材料方面取得了突破性进展。研究团队以锂离子电池高容量富镍正极材料LiNi0.8Co0.1Mn0.1O2为研究对象,从分析Ti和La在LiNi0.8Co0.1Mn0.1O2表面的迁移势垒出发,发现Ti掺入体相而La逃离至表面的状态为体系能量最低的状态即稳定状态。根据理论计算结果,合理设计并同步合成了Ti掺杂&La4NiLiO8包覆(简写为Ti&LaMO)的LiNi0.8Co0.1Mn0.1O2正极材料。该改性方法简单,有利于大规模推广,所合成材料具有良好的热稳定性、结构稳定性及优异的电化学性能,为富镍三元材料的开发应用提供新的思路和理论指导。

    该工作以长沙理工大学为第一单位发表在材料领域著名期刊《先进功能材料》(Advanced Functional Materials,影响因子13.325),论文第一作者为长沙理工大学在读硕士研究生杨慧平,李灵均副教授为论文第一通讯作者。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=424089
相关报告
  • 《突破 | 北京理工大学在高效率铸态有机太阳能电池的研究中取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2024-09-23
    • 溶液处理有机太阳能电池(OSCs)是一种有潜力的绿色光电转化技术,其在光伏建筑一体化,柔性可穿戴设备领域展现出巨大的应用潜力。器件效率、稳定性和成本是有机光伏商业应用的三个最关键的因素,而在成本方面的研究相对落后于前两者。从材料角度来看,简化分子结构,合成步骤与提纯过程是降低器件成本的有效策略。在器件制备方面,铸态OSCs即活性层不进行任何工艺优化,其无疑是降低成本最有效的方案。然而,从分子设计的角度构筑高效率铸态器件还鲜有报道。在这项工作中,该团队通过逐个增加吡咯单元上亚甲基碳的个数,设计和合成了五个A-DAD-A型小分子(A1-A5)受体材料,以此为基础研究具有不同链长度的小分子受体与铸态器件之间的构效关系。 随着烷基链的延长,薄膜的吸收光谱从A1到A5逐渐发生蓝移,同时最低未占据分子轨道(LUMO能级)也略微上移。 随着LUMO能级的略微上移,有利于实现器件的短路电流密度和开路电压之间的平衡。此外,较长的烷基链还能提高受体和给体之间的相容性。通过原位紫外-可见吸收光谱(图2)结果分析表明,良好的相容性将会延长分子自组装时间,并有助于给体相的优先形成,进而受体沉淀在由给体形成的框架中。相应的成膜过程有助于形成具有合适纤维结构、分子堆叠和垂直相分离的薄膜形貌,从而提高填充因子。因此,基于D18:A3的铸态器件实现了18.29%的最高效率。在该工作中,该团队从分子设计角度,提出了一种构筑高效率铸态器件的有效策略,并明晰了材料结构-成膜过程-器件性能之间的关系,有助于推动有机光伏领域的产业化发展。 图1. (a) A1-A5的化学结构。(b) D18和A1-A5的归一化薄膜吸收光谱。(c) A1-A5在室温下在氯仿中的溶解度。(d) D18和A1-A5的能级。(e) A1-A5纯薄膜在IP和OOP方向上的线切割轮廓。(f) D18和受体的分子间作用力。(g) D18与不同分子之间的堆积模型 图2.A1-3的原位紫外-可见吸收光谱、一维吸收光谱曲线和最大吸收峰位随时间变化曲线
  • 《突破 | 华南理工大学选区激光熔化NiTi形状记忆合金研究进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-02-26
    • 由于NiTi形状记忆合金(SMAs)具有高反应敏感性和低热导率等物性,导致其初步成形件的后续加工十分困难,作为一种典型的金属增材制造技术,选区激光熔化(SLM)增材制造技术在近净成形复杂几何形状的金属构件方面具有显著优越性,能够有效解决NiTi SMAs冷加工难、加工成本高的问题。为实现SLM NiTi SMAs的工程应用,需厘清其工艺参数-微观结构-功能特性的内在联系,揭示其相转变行为与功能特性变化的机理,建立坚实的理论基础。 基于此,华南理工大学杨超教授团队在《金属学报》期刊发表的《选区激光熔化NiTi形状记忆合金研究进展》一文中重点对选区激光熔化(SLM)增材制造NiTi SMAs的成形性、相转变行为、微观结构、力学性能和热机械性能的相关研究结果进行了分析与总结。同时,对近来SLM多孔NiTi SMAs的设计及其生物相容性的探索研究进行了阐述。最后,展望了SLM NiTi SMAs研究过程中需要重点突破的问题。 NiTi、不锈钢和人体组织的性能对比图;多孔结构的模型图以及SLM制备的多孔NiTi SMAs 总结与展望 目前,针对SLM NiTi SMAs已经得到了较为系统的研究,关于SLM NiTi SMAs成形性的研究表明,低功率结合低速率以及高功率结合高速率是目前普遍采用的工艺参数;SLM NiTi SMAs相转变行为的调控则主要归因于基体中Ni原子含量的变化和热处理过程中沉淀相的析出与分布等,同时,成形过程中残余热应力的存在以及基体中元素分布不均匀的现象也会影响SLM NiTi SMAs的相转变行为;对于SLM NiTi SMAs的微观结构而言,大量柱状晶以及不均匀结构的存在会导致SLM NiTi SMAs功能各向异性的出现,后续热处理工艺能够有效消除这种各向异性并改善其功能特性;SLM NiTi SMAs的生物相容性正逐步成为研究热点,多孔结构设计的多样性、表面改性处理的可控性等为其在生物医用领域的应用提供了更多可能。根据国内外研究现状和发展趋势,为进一步促进SLM NiTi SMAs的发展,需要从以下几方面重点突破。 (1) SLM NiTi SMAs的拉伸超弹性研究。SLM NiTi SMAs中结构缺陷(如微裂纹、孔隙等)的存在导致目前研究以压缩变形为主,对SLM NiTi SMAs的拉伸超弹性研究相对较少,而NiTi SMAs在服役过程中普遍存在拉伸变形,因此SLM NiTi SMAs的拉伸超弹性有待深入研究。同时,对比也可以发现SLM NiTi SMAs相对传统轧制+时效NiTi SMAs的超弹性有待进一步提高,因此探索提高SLM NiTi SMAs的回复应变和形状回复稳定性的途径是实现其工业化应用的必要条件。 (2) SLM NiTi SMAs的双程形状记忆效应研究。双程形状记忆效应不是NiTi SMAs的固有属性,需要经过适当的冷变形(马氏体或奥氏体状态的过量变形)、热机械循环训练和约束时效等途径获得。从工程应用的角度讲,理想的双程形状记忆效应训练工艺应该具有应变大、稳定性好和相变温度变化小等特点。研究如何在SLM NiTi SMAs中获得稳定的双程形状记忆效应,实现其在智能机器人、复杂驱动装置与执行元器件等领域对复杂驱动元件的创新应用,是拓展复杂SLM NiTi构件应用的重要发展方向。 (3) SLM NiTi SMAs结构疲劳和功能疲劳的性能评价。目前关于SLM NiTi SMAs结构疲劳和功能疲劳的性能评价研究尚存在较大空白。在循环拉伸或压缩过程中,SLM NiTi SMAs会逐步出现结构疲劳和功能疲劳,2者存在紧密联系,也表现出显著区别。结构疲劳或者功能疲劳出现时,会破坏SLM NiTi SMAs的服役效果。SLM NiTi SMAs在循环拉伸或压缩过程中,基体位错的产生与积累、微裂纹的形成与扩展等会逐步导致其结构疲劳的出现;同时,在循环拉伸或压缩过程中,或者升温降温过程中,SLM NiTi SMAs在发生相转变的过程中,由于界面的不兼容性,会在马氏体与奥氏体的界面处形成少量的位错,这些位错的逐步积累会导致马氏体相变温度、相变滞后等功能特性发生衰减,最终导致功能疲劳的出现。在结构疲劳出现的过程中,会导致功能疲劳;功能疲劳形成的过程中,也会导致结构疲劳。如何使得结构疲劳和功能疲劳达到均衡状态,是SLM NiTi SMAs面临和亟需解决的关键问题之一。 (4) 各向同性的SLM NiTi SMAs的制备与研究。由于SLM过程中的快速熔化与凝固、复杂热历史等,SLM NiTi SMAs的微观结构与传统工艺得到的NiTi合金存在明显区别。SLM过程中,方向性的散热与凝固,会促进柱状晶定向生长和“外延生长”,导致大量柱状晶的形成和[100]B2织构的形成。如何有效避免大量柱状晶的形成,制备得到具有等轴晶结构、性能各向同性,同时提高其功能特性的SLM NiTi SMAs,是当前的研究热点。当前,国内外研究结合熔池凝固过程中的温度场分布、晶粒形核长大的理论等,通过外加磁场、基板预热和调控工艺策略等方法影响熔池凝固行为,获得了具有特定微观结构的SLM NiTi SMAs,在一定程度上减少了柱状晶的形成。同时,后续热处理也是有效获得各向同性SLM NiTi SMAs的有效方法。 (5) SLM多孔NiTi SMAs的生物力学性能与表面改性研究。SLM多孔NiTi SMAs相对传统多孔NiTi具有孔隙孔径可控、可设计度高、可个性化定制等优点。SLM多孔NiTi SMAs的研究目前主要涉及制备精度、微观结构、压缩性能、形状记忆性能、超弹性和体外生物相容性等,对于生物力学性能,如人体温度、人体体液下的强度、形状记忆性能、超弹性等,却没有涉及。后续研究需要对SLM多孔NiTi的生物力学性能开展大量研究,为其作为骨科植入物打下坚实基础。功能化表面改性处理是实现NiTi SMAs生物相容性进一步提高、减少Ni原子释放的关键步骤。通过抛光、表面合金化和涂层等表面技术,可大幅改善多孔NiTi SMAs的生物行为。此外,这些表面处理还可改善其促成骨、抗菌、抗炎等生物功能。 (6) SLM多孔NiTi SMAs的植入实验与性能评估。尽管多孔NiTi SMAs在椎间融合器等骨科植入物方面已经取得了显著的临床应用效果,但SLM多孔NiTi植入物的临床应用尚未实现。开展SLM多孔NiTi SMAs的植入实验与性能评估是实现其临床应用的必要前提。通过多孔结构设计与优化,制备得到满足不同植入需求的多孔NiTi植入物;通过动物植入实验,评估其生物相容性,检测其植入需求完成度,并对其综合性能进行准确评估,得到SLM多孔NiTi植入物的综合评估数据库,能够为实现个性化的多孔NiTi植入物在骨缺损治疗、骨缺损自填充等方面的临床创新应用奠定基础。整体而言,SLM多孔NiTi植入物临床应用的实现是一个充满挑战的跨学科难题,需要材料、机械、生物、医学等多学科共同来完成。