《Cell Rep:利用装载CRISPR的病毒来感染肠道菌群或能阐明微生物组基因编辑的潜能》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2021-11-29
  • 对人类微生物组在疾病易感性和疾病疗法中作用机理的研究,由于缺乏从复杂群体中精确添加或移除微生物菌株或基因的方法而受到了一定的限制。近日,一篇发表在国际杂志Cell Reports上题为“Phage-delivered CRISPR-Cas9 for strain-specific depletion and genomic deletions in the gut microbiome”的研究报告中,来自加利福尼亚大学等机构的科学家们通过研究成功利用DNA编辑系统—CRISPR改变了生活在哺乳动物肠道中细菌的基因组,这一进展或代表了科学家们理解微生物组的研究进展,最终有望帮助开发治疗肠道相关疾病的新型疗法。

    在这篇具有里程碑意义的研究中,研究人员从生活在小鼠肠道中的大肠埃希氏菌中移除了大块的基因,同时还改变了其消化系统中细菌群落的整体组成;研究者Peter Turnbaugh博士指出,我们已经证明了能在哺乳动物的肠道微生物组中进行首个稳定的基因编辑,而这或许是尝试对肠道内细菌进行工程化改造的起点。

    目前想要改变肠道微生物组的研究人员的选择非常有限,比如,细菌性食物中毒和类似的问题都能利用广谱抗生素来处理,但这种药物同时也会杀灭有益的微生物;同时粪便移植也被用于在遭受特定感染或胃肠道疾病的患者机体中重新培育出健康的微生物群落;但临床医生并不能确定所引入的微生物是否能取代患者机体当前的细菌群落,这意味着患者的治疗或许并不会总是成功。研究者Turnbaugh说道,修饰已经在消化系统中繁殖的细菌或许是未来研究和治疗微生物组相关健康问题的一种关键方法,直接改变肠道中的微生物基因组将为微生物组的治疗引入到了一个尚未实现的精确水平下。

    能够改变肠道中已经存在的微生物DNA或许能让研究人员以一种比此前更加可控的方式来研究微生物组,其或许也能提供一个机会来询问关于健康和疾病相关的重要问题。研究者Turnbaugh重点对大肠埃希氏菌进行了研究,其是一种天然存在于肠道中的细菌,但某些毒株会因引发食物中毒而名声不好。在肠道微生物组中进行精确的基因编辑的一个有用的应用或许就是针对无害的大肠埃希氏菌,同时还会不干扰有益的菌株。这项研究中,研究人员想知道是否听他们能利用基因编辑工具来靶向作用并杀灭大肠埃希氏菌,并让另一种菌株不受影响;研究者使用了一种名为M13的病毒来将CRISPR-Cas9基因编辑系统注射到大肠埃希氏菌细胞中,并在细胞内工作从而切断DNA片段。

    相关的研究结果具有一定的戏剧性,在引入CRISPR-Cas9系统之前,靶向性菌株在实验室小鼠中收集的粪便中尤为突出,然而进行基因编辑后,靶向性菌株则会很快消失;两周后,其仅占到了所监测的细胞群的百分之一的比例。本文研究成功的一个关键在于研究人员使用了一种工程化的M13,其在自然状况下能攻击大肠埃希氏菌但并不能在消化系统中很好地生存。为了解决这一问题,研究人员将一种抗生素耐药基因拼接到了DNA上,并能让M13病毒很好对运输到细胞中,从而使得病毒和其所携带的CRISPR-Cas9系统能更容易地传播扩散。

    研究人员设想,未来有一天他们或能利用类似的方法来促进人类机体中有益肠道菌群的生长;比如,如果研究人员在特定细菌中编辑基因来使得细菌能以罕见的营养物质为食,那么一个人仅需要在其饮食中加入大量的这些营养物,就能对其肠道中不断发展的微生物混合体产生一些控制;首先,研究人员需要扩展其工具包中的病毒清单,并通过实验来揭示如何通过改变个体机体的微生物组来影响整体的细菌群落。

    研究者Turnbaugh表示,我们的梦想就是可以选择肠道中的哪些特定菌株,或者仅含有个别的基因,你想促进其表达或移除其表达;我们对能再大肠埃希氏菌中推动这一进程感到非常兴奋,同时也希望其能为肠道微生物的其它成员带来类似的研究工具。综上,本文研究结果为微生物组的编辑提供了一种强大的实验上可操作的平台,并未完善这种方法来增加靶向作用的效率奠定了基础。

  • 原文来源:https://www.cell.com/cell-reports/fulltext/S2211-1247(21)01403-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124721014030%3Fshowall%3Dtrue;https://news.bioon.com/article/6793543.html
相关报告
  • 《Cell Rep:脱发的元凶或是“肠道菌群”》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-05-10
    • 近日,一项刊登在国际杂志Cell Reports上的研究报告中,来自日本的科学家通过研究发现,脱发或许是因肠道菌群导致的;我们都知道,肠道菌群在人类机体健康中扮演着关键的角色,尤其是维持胃肠道的健康方面。微生物拥有一个巨大的可用酶类的工具箱,其能帮助有效分解机体摄入的食物,其能够帮助制造机体所需的微量营养物质,包括生物素、维生素K、B12、烟碱酸和叶酸等。 生物素(维生素B7)是一种蘑菇和豆类中存在的特殊维生素,如果机体无法获取足够的生物素,就会诱发皮肤疾病和脱发等疾病,而机体的某些肠道菌群就能制造这些生物素,而其它细菌则会分解这些可用的生物素并且利用它,通常会在一些诸如乳糜泻疾病的患者中出现生物素缺乏的状况,但这种状况通常在孕妇中也经常出现。 无菌小鼠会变秃 此前研究人员通过研究发现,饮食中缺乏生物素的无菌小鼠会患上轻度脱发,因此科学家们就想通过研究阐明是否背后的原因是肠道菌群的失衡导致的。本文中,研究人员就通过研究阐明了产生物素细菌和消耗生物素细菌之间的差异,这货能帮助发现到底有多少生物素能用作机体的皮肤、头发和指甲的发育。 研究人员给予小鼠喂食含有生物素和不含有生物素的饮食,同时观察对小鼠毛发的影响状况,随后他们对实验进行了重复,结果发现,当让小鼠长期摄入抗生素破坏其肠道菌群的平衡时,其毛发出现了轻度的缺失,而这与此前他们在无菌小鼠中观察到的结果一样;通过对这些小鼠的肠道菌群进行研究,研究者们发现,一种名为鼠乳杆菌的特殊乳酸菌或许会在抗生素疗法后加速小鼠的表现,这种细菌不能产生生物素,而其或许是诱发机体生物素缺失以至于毛发脱落的元凶。 脱发可以被阻止 为了检测上述结论,科学家们利用无菌小鼠重复了原始的实验结果,当利用鼠乳杆菌喂食无菌小鼠时,他们发现小鼠毛发脱落的状况加剧了,而且小鼠全身几乎完全秃了;随后研究者进行了对照测试,即给普通小鼠和无菌小鼠喂食含有正常水平生物素但额外添加了鼠乳杆菌的特殊饮食,结果发现,这些小鼠没有一点脱发(毛发)的迹象。 未来研究者或许能直接通过注射生物素来阻断脱发发生,尽管如此,研究人员也无法排除皮肤细菌所产生的可能性影响;阐明肠道菌群和饮食对脱发的影响或能帮助研究人员通过操控肠道菌群的组成来开发新型疗法,有效治疗脱发。比如研究人员可以开发出一种益生菌膳食补充剂来改变机体的肠道菌群组成,并且抑制肠道中消耗生物素的细菌生长,从而有效抑制脱发。
  • 《微生物研究所发现B族肠道病毒通用受体并解析病毒利用“双受体系统”入侵的作用机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-05-21
    • 2019年5月16日,中国科学院微生物研究所高福团队与北京大学魏文胜团队,首都医科大学附属北京儿童医院谢正德团队联合,在Cell杂志上发表了题为Human neonatal Fc receptor is the cellular uncoating receptor for Enterovirus B的文章。该论文中,研究人员利用CRISPR筛选技术,发现人类新生儿Fc受体(human neonatal Fc receptor, FcRn)是多个B族肠道病毒的通用脱衣壳受体,并通过解析病毒与其吸附受体(attachment receptor)和脱衣壳受体(uncoating receptor)在不同pH条件下复合物的原子/近原子水平高分辨率电镜结构,从分子水平揭示了“双受体系统”中两种受体的不同作用机制,系统地阐明了肠道病毒感染宿主细胞的入侵机制。本研究在B族肠道病毒的致病研究和药物开发,非囊膜病毒的入侵机制研究方面均具有重要意义。 B族肠道病毒(Enterovirus B ,EV-B)属于小RNA病毒科(Picornaviridae),肠道病毒属(Enterovirus)。包括埃可病毒(Echovirus),柯萨奇病毒B,柯萨奇病毒A9,以及多个新发现的B族肠道病毒血清型。 B族肠道病毒感染是常见的新生儿期感染性疾病病因之一,可导致新生儿和青少年病毒性脑炎,脑膜炎,脑膜脑炎等疾病,部分病例留有严重后遗症,严重时可致命。还可导致急性驰缓性瘫痪(AFP),非特异性皮疹,肝炎,肺炎,凝血障碍和手足口等疾病。2019年5月11日,广东省卫生健康委员会查办了一起发生在南方医科大学顺德医院的严重医疗事故,这是由肠道病毒(埃可病毒11型)导致的医院感染事件,造成了5例患有新生儿肺炎等基础疾病的患儿死亡。在我国,埃可等B族肠道病毒长期以来是很大一部分儿童脑炎,脑膜炎病例的致病病原,长期范围内在多个省份均有感染病例。此外,在世界范围的流行造成的公共卫生事件也均有报道。但是此前,除柯萨奇病毒B之外,埃可病毒等大多数B族肠道病毒的致病机制以及跨越血脑屏障机制尚不清楚,决定其感染细胞的关键受体尚未发现和报道。导致埃可等B族肠道病毒无特异性药物,无疫苗,无用于药物疫苗研发的动物模型。因此,研究团队进行了埃可等B族肠道病毒的受体和入侵机制相关研究。 研究人员选取其中致病性较强的血清型埃可病毒6型(Echo 6),通过CRISPR-Cas9膜蛋白基因组筛选技术,发现人类新生儿Fc受体是病毒入侵细胞的一个关键受体。新生儿Fc受体是由FCGRT基因表达的α链和β2-微球蛋白共同组成的异源二聚体,是一个重要的免疫因子,其主要功能有从母体通过胎盘向胎儿转运保护性抗体,帮助新生儿从肠道吸收母乳中的抗体,以及在成人体内介导抗体“回收”等。该研究发现,这种对胎儿和婴幼儿起重要作用的免疫因子可以被B族肠道病毒“绑架”,作为其入侵宿主细胞的关键受体。 本研究中,研究人员检测了B族肠道病毒各进化分支中具代表性的17个毒株(分属15个血清型),除Echo 6, Echo 30的两个原型株外,均为我国近年来的流行株。检测发现,除柯萨奇B4,B5之外,其余15个毒株均依赖于FcRn来完成其感染过程,其中包括致病性较强的柯萨奇病毒A9,埃可病毒6,9,11,30等。该研究揭示了FcRn是B族肠道病毒的一个通用受体。 研究发现,与之前报道的埃可病毒表面吸附受体不同(如CD55等),FcRn是一个脱衣壳受体。当病毒颗粒与受体直接结合后,,在生理条件下以及在受体和脂质膜的共同作用下,病毒完成了入侵细胞时必须的脱衣壳过程,最后将遗传物质释放到宿主细胞内。 为了进一步阐明病毒和受体的互作机制, 研究人员利用冷冻电镜技术,解析了Echo 6病毒,及Echo 6病毒与其吸附受体CD55的复合物,脱衣壳受体FcRn的复合物,在不同pH条件下的原子/近原子水平高分辨率电镜结构(共7个电镜结构,2.9-3.8 ?)。结果表明,Echo 6及Echo 6-CD55的复合物在中性和酸性pH条件下均稳定。FcRn结合在正二十面体病毒表面由VP1蛋白形成的“峡谷”(Canyon)样结构部位。在酸性条件下,FcRn诱导病毒表面蛋白发生变构,使得峡谷内部维持病毒粒子稳定性的脂类分子(又称“口袋因子”,pocket factor)释放,从而起始脱衣壳和遗传物质释放过程。本研究首次在近原子水平的病毒-受体复合物结构中捕捉到pocket factor释放的中间态;首次在分子水平清晰展示介导脂类分子转运口袋附近关键氨基酸的构象变化;并首次以原子/近原子水平高分辨率电镜结构,系统阐明了非囊膜病毒入侵过程中“双受体系统”的作用机制。 中国科学院微生物研究所助理研究员赵欣,北京大学博士后张桂根,中国科学技术大学与中国科学院微生物研究所联合培养博士生刘升,首都医科大学附属北京儿童医院副研究员陈祥鹏为本文的并列第一作者;高福院士和北京大学魏文胜研究员,首都医科大学附属北京儿童医院谢正德研究员为论文共同通讯作者。中国科学院苏州医工所高山研究员,中国疾控中心病毒病研究所张勇研究员,微生物所齐建勋研究员、施一研究员、严景华研究员,以及中国科学院微生物研究所,北京生命科学研究院高福院士团队成员等对本项目给予了大力支持。本研究得到了中国科学院战略性先导科技专项项目、科技部重点研发计划、国家科技重大专项、国家自然科学基金等的经费支持。