《微生物对C存储的影响》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2017-01-19
  • With more than 7 billion microorganisms in the soil, it's no surprise we still have a lot to learn about them and their impact on the environment. A West Virginia University researcher is uncovering critical information about these tiny organisms under our feet, which although small, can have a huge impact on the environment.

    Ember Morrissey, assistant professor of environmental microbiology in the Davis College of Agriculture, Natural Resources and Design, received a $150,000 grant from National Science Foundation's Division of Environmental Biology's Early-concept Grants for Exploratory Research program, known as EAGER, to increase understanding of the behavior of microorganisms in the soil to provide descriptions of microbial function that currently aren't available.

    Morrissey's research will lay the groundwork needed to figure out how soil can be managed to address environment-related processes and issues, including global warming and climate change.

    Of particular interest for Morrissey and other researchers is the ability to formulate more precise predictions of microorganisms' carbon cycling, or how they use and create carbon, a key to combatting climate change.

    "Soil stores a large fraction of Earth's carbon - actually more carbon than the atmosphere and biosphere combined," Morrissey explained. "Microorganisms break down and consume this carbon as they live and grow, converting it into the greenhouse gas carbon dioxide.

    "Consequently, the activity of microorganisms in soil has the potential to alleviate or worsen climate change, so we need to form predictions regarding their activities."

    At the basis of Morrissey's research: decomposition. Using this integral ecosystem process, Morrissey will investigate the role evolutionary history plays in determining microbial function.

    The NSF Division of Environmental Biology supports fundamental research on populations, species, communities and ecosystems. More specifically, the EAGER program supports exploratory work in its early stages on untested, but potentially transformative, research ideas or approaches that could lead to further research and discovery.

    Morrissey's proof of concept research project fits the bill.

    "In the past, the study of complex microbial communities has been slowed by the methodological limitations," Morrissey said. "This support has enabled us to use the most advanced approaches available."

    In addition to one research technician, Morrissey has one graduate student working in her lab and is seeking motivated undergraduate students to add to her team.

    "There are still many unanswered questions about how microbial biodiversity influences ecosystem function," she said. "This is a very exciting time as we can now quantify the activity of individual microbial species and begin to understand how they contribute to ecosystem-level processes."

  • 原文来源:https://www.sciencedaily.com/releases/2017/01/170117102154.htm
相关报告
  • 《超声去污对新鲜农产品微生物及感官特性的影响》

    • 来源专题:食物与营养
    • 编译者:韩宇静
    • 发布时间:2019-05-08
    • 许多研究集中在评估超声波对新鲜农产品的去污效率,同时确保其质量特性的保持。本研究的目的是评估26kHz、90μm、200W超声处理5min对5-15°C保存数天的货架上的生菜叶片的影响。对微生物,即病原体和腐败生物,进行分析,以评估净化处理的效果。此外,还进行了感官研究,以确定超声波技术对生菜外观、褐变、质地和气味等品质参数的影响。超声处理的样品在高于5摄氏度的温度下,微生物的增加速度更快,表明超声处理的抗菌效率随着温度的升高而降低。ANCOV分析显示,虽然超声治疗对总计数没有显著影响,但对病原菌计数有显著影响。在感官分析方面,即使在储存10天后,对照样品在5°C下的得分也更好,而在15°C下,质量在第2天之后立即下降。超声处理的样品对生菜的感官质量有负面影响,因为这些样品得分较低。使用存储参数进行ANCOVA测试表明,存储温度、存储时间和超声处理均影响了感官评分。根据这些结果,超声可以有效地对抗病原菌。虽然感官结果表明,超声处理对生菜叶片有一定的负面影响,但将超声技术与其他技术相结合,有利于达到抗菌效果与感官损伤之间的最佳平衡。
  • 《《Nature》:微生物影响地球深部碳循环》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2019-05-06
    • 两块板在地球俯冲带碰撞,过程中会导致密度较大的板块下沉,并将物质从地面输送到地球内部。最近的研究表明,在板块碰撞过程中,近地表的微生物在将碳和其他元素锁定在地壳中发挥着重要作用,相关研究结果发表于《自然》(Nature)杂志上。 研究人员以哥斯达黎加的俯冲带为研究对象,探究了微生物是否会影响从地球表面进入深层内部的碳循环。研究结果表明,微生物能够吸收溶解在水中的碳,并将其转化为岩石中的矿物质。这种情况大规模地发生在俯冲带上。这说明在地质时间尺度上,微生物不仅影响地表的物质,还在地壳中储存碳等元素,更像是一种天然的CO2封存工艺。这一发现对于理解地球的基本过程以及揭示大自然如何自我调节缓解气候变化具有重要意义。 在为期12天的探险中,一个由25人组成的多学科科学家小组收集了哥斯达黎加各地温泉的水样。科学家们预测,这些温泉会喷出数百万年前储存的碳分子。通过比较碳同位素的相对量,结果表明这些预测是正确的,即微生物参与了在俯冲带的地壳中存储大量碳元素的过程。 研究人员称,在此之前,科学家们已经假定生命在碳传输到地幔的过程中几乎没有任何作用,但我们发现生命和化学过程共同作为碳输送到地幔的守门人。根据他们的分析,估计大约94%的碳转化为矿物质和微生物生物量。目前,研究人员计划继续调查其他俯冲带,观察这种现象是否普遍存在。 (刘晓琳 编译) 图片源自网络