《Cell丨揭示细胞短距离囊泡运输新机制——突触前膜相分离三部曲》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-04-01
  • 2024年3月28日,张明杰院士团队在Cell上发表了题为Short-distance vesicle transport via phase separation的文章。

    在细胞内,长距离的物质运输主要是通过马达蛋白牵引货物沿着细胞骨架进行定向移动来实现的。然而,细胞内同样存在着许多短距离定向运输的需求,例如突触前膜的突触小泡需要从储备区(reserve pool)调动至活性区(active zone),以及COPII和COPI囊泡在高尔基体潴泡间定向转运等。对于这类短距离运输,依赖于马达蛋白和细胞骨架的方式不仅能耗过大,而且通常这些短距离运输的场景并不涉及细胞骨架的参与。另一方面,被动扩散虽然能发生,但却无法满足方向性的运输需求。因此,细胞如何巧妙地应对这种短距离定向运输的挑战,是细胞生物学研究领域里悬而未决的问题。

    该研究揭示了一种新型的由相分离介导的囊泡运输方式,该方式既摆脱了传统远程运输对马达蛋白与细胞骨架的依赖,又解决了被动扩散无法提供方向性的问题。我们有理由相信,在更广阔的细胞生物学领域,这种相分离介导的短距离囊泡定向运输方式将展现出更普遍的应用前景。这一发现不仅深化了我们对细胞内部物质运输机制的理解,也为未来相关疾病的治疗和药物研发提供了新的思路和方向。

相关报告
  • 《研究发现细胞内囊泡运输新型调控机制》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-01-14
    • 细胞内囊泡运输对于维持细胞以及机体的多种生理功能必不可少,2013年诺贝尔生理学或医学奖被授予发现囊泡转运机制的三位科学家。在真核细胞内,大约三分之一的蛋白质在内质网(ER)中折叠和修饰,然后被运送到高尔基体(Golgi)。蛋白质从内质网到高尔基体的运输(ER-to-Golgi)过程是对蛋白质进行质量控制和分选的重要阶段,对维持细胞内稳态至关重要。ER-to-Golgi运输由COPII小泡驱动,而COPII小泡主要由Sec23/Sec24内壳蛋白复合体和Sec13/Sec31外壳蛋白复合体构成。至今为止,COPII小泡是如何运输到高尔基体的机制还不完全清楚。 中国科学院上海营养与健康研究院陈雁课题组博士生曹倩倩等近日发现孕酮和脂联素受体3(PAQR3)在COPII囊泡运输中发挥了重要的作用。在这项研究中,首先使用APEX2邻近标记策略和质谱分析来鉴定出992种PAQR3临近的蛋白质,其中大多数都参与了细胞内转运的生物过程。接着借助GalNAc-T2和RUSH两个ER-to-Golgi转运的模型系统发现,PAQR3缺失延迟了蛋白质从内质网到高尔基体的运输。通过一系列的生化和细胞实验,发现PAQR3的N端能够与Sec13和Sec31A的WD结构域相互作用并增强Sec13和Sec31A的高尔基体定位,从而揭示了PAQR3是一个通过与COPII囊泡的Sec13/Sec31A外壳蛋白复合体相互作用来调节ER-to-Golgi转运的关键分子。   PAQR3主要作为一个抑癌基因,在多种肿瘤中具有抑制功能。考虑到平衡和控制细胞内运输对于维持细胞内稳态至关重要,研究者推测许多类型肿瘤中发现的PAQR3的失调可能与细胞内稳态失调有关。因此,该研究的发现不仅拓展了人们对胞内运输复杂性的理解,也可能增加对于人类疾病尤其是肿瘤的分子基础的理解。   上述工作于11月30日发表在Cell旗下国际学术期刊iScience上,题目为PAQR3 Regulates Endoplasmic Reticulum-to-Golgi Trafficking of COPII Vesicle via Interaction with Sec13/Sec31 Coat Proteins。该研究得到华东师范大学教授廖鲁剑的大力支持和帮助。该课题得到国家自然科学基金、科技部以及中国科学院等的支持。
  • 《丁梅研究组揭示神经突生长调控新机制》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-12-01
    • 神经突正确延伸对于神经网络的形成至关重要。过去几十年的研究发现了数十种导向信号分子,它们作用于生长锥表面受体,通过调控细胞骨架的动态运动,控制神经突的靶向性延伸。然而,神经元轴、树突在生长和延伸过程中往往遭遇多种导向信号,神经元如何同时解读多种不同信号,并做出最终的单一性选择,其机制并不完全清楚。   中国科学院遗传与发育生物学研究所丁梅研究组发现,线虫RME神经突延伸过程中同时暴露于Slit和Wnt两种信号分子。虽然RME神经元表达Slit受体-Robo,但其延伸并不受Slit调控。相反,Robo与酪氨酸受体家族孤单受体Ror2形成受体复合物,帮助Wnt信号的传递。Robo 在线虫中的唯一同源蛋白SAX-3可以直接结合Wnt分子,并协同其他Wnt受体,将信号传递到下游效应分子Dsh。Dsh蛋白是RME神经突延伸的重要驱动,在RME神经突生长侧非对称聚集。有意思的是:Robo也存在与Dsh类似的非对称分布,且Dsh的极性分布依赖于Robo。这表明Robo的非对称性分布促进了RME神经突在特定方向的延伸。该研究揭示了Robo受体与Wnt-Ror信号通路的相互作用机制,暗示:在不同信号分子共存的情况下,原本认为是针对某一特定信号的受体其实可以通过与其他受体互作,变换自身感应特质。这一现象的揭示,有助于增进我们对复杂在体环境下神经突如何整合不同信号的认识,为探索神经网络发育形成调控机制提供了新见解。   该研究结果于2018年2月20日在线发表于PNAS杂志上(DOI:10.1073/pnas.1717468115)。丁梅研究组博士研究生王家明为该论文第一作者。这一工作得到了国家自然科学基金委和国家重点基础研究发展计划的资助。