《新思科技创始人:芯片开发的核心在于融合》

  • 来源专题:集成电路
  • 编译者: shenxiang
  • 发布时间:2019-11-19
  • 今天,ASPENCORE第二届“全球CEO峰会”在深圳举办,峰会邀请世界各地行业领袖和创新巨擘一起探讨新一轮技术冲击下最热门的技术话题,搜罗差异化的创新点,准确定义下一代电子产品。新思科技创始人Aart de Geus博士发表了《后摩尔时代,shift left抢占经济先机》的演讲。

    以下是Aart de Geus演讲的具体内容:

    我们看到硅和软件是两个最重要的因素,打开万物互联的世界,因为它真的改变了我们,就像四五十年前计算改变我们的生活一样,四五十年前我们也很难做到让幻灯片进行演讲的变化。作为演讲者我就要学习不断地适应这个变化。

    我们人类的知识对技术的发展也是非常重要的。我们知道,智能的事情其实不是新的东西,我们可以几百年前放到一些聪明智慧的东西,比如在很多年前,几十万年前我们就可以发现,如果回到几千年前我们就出现了这些农用的工具,再回到之前,还有像我们这些农具、马、车轮等等,我们就来到了现在的年代。

    我们可以看到,在现代的年代,在后面近一个时代,摩尔定律还有数字电子,还有人工智能,让所有的事情都发生了改变。他们都有着同样的特点,就是他们给我们一种非常惊奇的事物出现,然后就得到我们一个工程学的应用。正如我们所看到的,我想给大家看的幻灯片没有及时放出来,大家看到,这是一个闭环,然后通过这样一种发展,进入了我们的科技经济的反馈,最后经过融合,回到科技行业,然后最终形成一种指数级的影响。

    之前我们也可以看到,它能够应用到很多不同的领域,比如说能够应用到我们生活里面的一些实际方面、生物的方面、生态的方面,还有我们的一些智慧知识方面,还有能够应用到我们的社会方面,还有不同方面的中间领域。最重要的在里面我们可以看到,这是我们的印刷机的发展,有了印刷的发展,给我们人类的技术发展有很大影响。我们首先有字母的产生,然后有了金属的活字,墨水、纸张,后来有的螺旋压机,当然在中国很久之前就有印刷技术的出现了。但在欧洲,在公元前六七百年,我们中国就有了雕版印刷,在德国公元后1440年就有了德国的活版印刷。五百年之后,我们也看到了另外一种印刷技术,我们出现了一种印刷的技术,就是布尔字母和逻辑库,然后又出现了平版印刷,电子设计和自动化产生的一种平板的晶体管,所以我们称之为一个数字年代。所有这些集成到一个芯片里面,改变了我们的生活。

    我们整个指数级是一个非常特别的,比如说像猛兽般一样发展的情况,因为它发展得非常快,它发展那么快,就代表着我们很难回到之前的一些步骤里面。我从大家其中的一些项目里面看实际情况,在项目里面会不会有延误的情况出现呢,还是经理是不是疯了,他为什么这样说你,但就算他疯了,我们可能还是会有点延误,因为我们知道,一开始的时候我们有很多不确定的东西,然后我们这些步骤逐渐地得到收敛,而我们要不断地去解决中间的一些问题,我们要解决在我们整个过程里面有令人惊奇的东西出现,我们要不断地解决这些让人吃惊的问题。

    在这里我们要解决几个问题:第一个就是结果的质量,还有实现者结果的时间,还有整个实现结果的成本。当然我们希望有更好的结果的质量,能够更快地实现这个结果,还有用更低的成本实现这个结果。

    非常缓慢的来解决这些问题,然后你把它整个的曲线向左侧推移,就变成这样一个过程,已经在过去的50年的时间里,我们都在这样做了,我们也在不断地验证这些观点。我们之前提到的EDA就是电子设计自动化,在过去50年的时间里,我们在做的事情,我们把它如果输入到电脑中,我们就能够进行一些相关的抓取信息,然后建立模型,然后最后模拟进行分析,进行优化,然后如果你进行优化之后,就能够进行自动化的操作,最后进行不断地重复利用,产生IP。我们看到,很多主要的问题,我们看到有很多的推动力,非常有趣的是,我们可以说在这个领域有非常重大的关注和努力,我们进行设计电脑,我们就是用这样的电脑程序来建立最先进的芯片。

    经常来看,可以说成功仅仅是一部分我们努力所取得的成果,而不是全部,可能有的时候经过很多努力也没有得到一个好的结果,比如说0结果,那就是合作的重要性,我们共同的突然,共同协作,你看到这一部分,我们不断地在向前推动,我们看到AI人工智能的发展,我们抓取了数据。你把它在网络中建模,然后学习,然后进行解码,然后最后进行有限的行动,最后把它深化成一个自动的行为,这也就是可以被我们未来所用到这些东西。

    你可以看到,经过这样一些模拟建模,我们就通过建模,跟机器学习不断地进行发展,我们就能够了解和预估未来可能造成的失败,来进行我们前面所提到的科技经济的向左迁移的这一部分。就是这样的一个演化,它就是一个复杂的科技经济,我们把技术由原来的规模复杂性转化成系统的复杂性。如果我们看这个系统的复杂,可以说摩尔定律是最重要的,需要我们不断地设计我们最新的半导体和显屏。可以说随着半导体和芯片的不断发展,我们看到很多电子产品不断地进行连通,然后进行协调,最后变成不断地发展。你可以看到供应链,供应链不断地发展,更加独立性,互相之间进行联动,越来越发展。在汽车行业,可以说汽车行车在发生很大的改变。汽车工业不仅仅是一个系统的复杂性,而且还要面对很多的问题挑战,比如说安全性等等。

    现在我们在建设越来越多的未来的汽车,不仅仅是越来越方便,越来越快捷,而且是越来越安全,这就是我们未来的一个方向。可以看到这个汽车里面,基本上包含四到五个关键性的电子系统,你可以看到,首先要建立一些汽车的基本东西,然后建立网络,在这所有的过程中,我们都需要有很多的东西,都需要芯片,这都需要花费时间。我们虚拟的模拟是什么呢?不仅仅是要使用这个芯片,而且要建立一个系统跟架构,然后建立一些模型,然后当你在这些方面做了之后,你把它发过去,他们就不断地进行验证,不管软件硬件都要进行验证,然后才能进行应用。因此我们有这样的一个虚拟板和实物板,我们就要在这个过程中不断地确认和了解,是否达到有效性和安全性。这也仅仅是一个例子,来说明一些我们刚才提到的内容,就是原型设计和样机研究。对于人类最重要的就是来预测气侯变化,而且要预测未来气侯变暖对全球的影响。可以说这个问题是非常巨大的,涵盖的内容非常地多,它有很多方面,在很多方面都造成相互的影响。如果我们看到系统的复杂性,你可以看到我们在1970年前,我们之间的模型是非常简单的,而到了1980年代,就有一个发展,然后你可以看到,随着时间的推移,气侯的模型越来越复杂。你可以看到,第四步就是越来越复杂了。

    我们在这个预测方面,非常地好,的确让我们非常地奇怪,我们可以看到,很多细节的一些模型,你可以很好地预测出未来的发展趋势,然后我们看到这些结果,我当时看到这些结果的分析并不复杂。你可以看到,这个全球范围内的耦合器或模型,你可以看到在60年代、70年代、80年代、90年代,随着时间的发展,数据的分析越来越复杂,而且越来越精确。你可以看到,2017年的还有最近的情况,气侯预测与测量。你可以看到它可以很好地看到一些相关的指标,来预测一些气侯性的世界性的特殊的事件发展。如果你能够看到这些东西的话,你能够看到这些分析,就能够告诉我们,预测和测量能够让我们很好地了解到气侯变化,还有全球变暖对我们全球气候的问题,如果我们不把这些问题分析清楚的话,我们就没有办法解决这个问题。

    我为什么要告诉大家呢?可以说通过分析这些东西,这些分析家是世界上最聪明,在这个行业最聪明的人士,他们在这些分析中能够分析很多数据,能够帮助到我们,不仅仅能够推动我们技术的发展,我们也能够了解到我们现在的产能是怎么样消耗能源的。如果我们进行一些简单的分析,一个相机的能源消耗,你可以可到一个普通的相机,消耗的能量是发电厂的产能,这里面仅仅是一个公式,你可以看到这个研究,你可以看到很多的数据,很多的能源,你可以进行很多的运算,都要涵盖在这里面。

    我们可以看到,里面有很多的一些计算,结果就是机器学习,机器学习实际上会消耗很多的能量,因此我们就需要设计更好的东西,就是消耗的能量更低。我们不断地发展我们新的技术,不断地促进这方面的发现,我们可以很好地应用。你可以看到很多东西都是起源于算法的,当我们谈到融合的时候,我们可不可以把我们现有的一些技术能够把它整合到一起,能够把他们整合到同样的算法里面,能够提高它的有效性。

    我给大家一个例子,在很多年前,我们努力建立一个计算机,很多计算机涵盖很多处理器和存储器,怎么融合呢,非常简单有效,就是进行架构的创新,这是关键要素所在。

    这是至关重要,我们就要把这些进行创新,把他们融合在一起,在设计芯片的时候,我们也要有类似的问题需要回答。我们需要有很多的步骤采取。比如说架构,还有模拟,还有整合,还有测试,还有时间,还有功率,还有进行整合等等的一些内容,最后达成整个的过程。刚才我们提到了缓存。我们可以看到,这是我们1995年以来,在计算机设计方面等等一些方面所取得的很多的进展和融合。

    对我们来说,我们能不能在这两方达成融合,就是通过团队合作,答案是对的,我们可以的。我们必须要进行这方面的一些工作,我们必须一步步地来,做重要的合成,然后并且根据它的路径和路由器等等进行整合,最后我们把它整合在一起,并且仔细地看看里面的算法,并且通过前面的一些架构的创新,来达成融合编译器。我们在这些工作做了之后,我们就知道了,我们能够做到哪些东西,我们把它们能够融合起来,能够不断地增加设计步骤的速度,可以说能增加100%,也就是原来的两倍多,并且能够使得它的响应时间更快,它使用的功率更加小,并且占据的产品空间越来越小,就是产品越来越精巧。而且我们也在这方面加进了很多人工智能的步骤,来达成更好的最后结果。

    当然,最后就回到了我们经常谈到的一个课题,就是人工智能AI,它在我们人生的方方面面都离不开人工智能,这所有的东西都先要开始谈一下融合,我们实际上最伟大的一个融合机器就是我们的大脑,首先就是逻辑思维,还有进行分析。也还有一种学习的模式,能够让我们不断地学习新的东西,人脑是人类出现最伟大一个合成融合的机器。如果我们进行比较的话,如果我们把人工智能与人的大脑自然智能进行比较的话,我们就能够看到这样一个发展过程,从1997年相关的围棋、象棋,还有2015年的一些游戏等等东西。有一天它发展到一定阶段,可能把你们的母亲都可以替代掉。但我们可以想一下,我们的妈妈是一个只需要使用12W功率非常聪明的一个人。所以我们在人的大脑里,有一个非常非常深入的人工智能,要很多年才可以真的达到那种高的水平。我们可以看到,在其中有多种能力去驱动人工智能的发展,比如包括机器学习,还有通过物联网,让我们得到很多的大数据,我们经济的利益也让我们能够进入到垂直的市场里面,每一个垂直的市场都能让我们的AI有非常迅猛的发展。

    这幅图的比例是有一点点不太对的,我跟你说一下,我们对我们的半导体是非常自豪的,但我们看一下我们今天的半导体,其实整个市场量只有5000亿的规模,我们看整个的软件我们还不知道有多少万亿,但我们在之前看整个GDP,有85万亿这么多,所以我们怎样把这个半导体在里面的贡献额更加地提高呢?因为现在只有5000亿这么小。我们可以看到,在整个解决方案里面,市场规模可以达到10万亿那么多。所以通过我们的摩尔法则的拉动,能够让我们整个半导体市场的规模变得更高。所以通过这种拉动,能够让我们的科技和经济有非常大的发展。

    我们可以想一下,整个的规模有不断的发展,然后可能成本会越来越高,但整体通过这样一种半导体芯片体积的压缩变小,还有不断的变薄。我们还可以把它们堆叠在一块,拉在一块,我们可以看到,在这样一个小的芯片里面,里面可以包含12000亿个芯片组,晶体管等等。然后在里面有非常多层,可以把这么多的芯片提供到我们不同的运营商他们使用。

    我最推荐的就是第三样,我们要让芯片变得更加专业化,用到一些具体的行业和领域里面,然后再从中建立全新的架构。在中国很多公司正在构建下一代AI的架构,他们每个公司都说,我们在做的是最好的,前所未有最好的一些芯片。当然在这里我们也面临一些挑战,我们可以看其中一个就是要用的能耗,比如损耗的能耗,动态的电能,还有大多数的能量,我们所需要的都是热能,还有一些人类所需要用的能量。在里面安全也对我们整体的流程产生一个影响,也对我们的安全还有我们所期待的可靠性也会有影响。当然,最后也会考虑到我们的隐私。

    所以这些目前都是在软件领域去解决的,软件其实整个的发展流程跟整个硬件的流程其实是一样的,我们一开始的时候,就想要去完成这个软件,在我们去完成这个软件之后,我们很快就会做完这样一个过程,因为我们有一些开源的代码,我们还需要去检查它的安全性,如果我们找到问题就要解决这个问题,如果我们找到更多的问题,我们要不断地去解决它。我们会用很多的开源,可能会让我们提高更多的效率,但开源也会产生数据泄露的问题,所以未来应该怎样解决这些问题呢?我们应该在整个流程过程的最前端就开始介入。当我们再去开发的时候,我们在不断地开发过程中,要把这些问题都解决掉。有时候通过一些电子的学习,比如可以开发一些软件测试,去发现问题,然后进行直接验证,我们也要验证所有的开源,没有任何问题,然后我们也要得到一些许可,去遵守这些许可。所以这就是我们所说的向左推移的流程。

    所以在我的演讲里面说了很多的主题,由于我的控制器不太灵光,让大家觉得有点卡顿,但我希望在我这里在分享的概念,智能互联关系着很多方面,它关系到我们整个指数级的发展,也关系到每个领域里面都要做向左推移的控制和管理。我们也看到了,调整我们有关结果控制的,比如说包括质量、时间和成本的调整。我们也可以看到,我们面临了很多挑战和验证的问题,我们也要打造很多的原型和样本。我们要处理很多我们需要用到的这些能量,还有我们要去处理安全、隐私、可靠性等等问题。对我来说最有趣的一个解决方案就是,这让我们有机会去改变我们过去很多事情的一些架构,为了要能够做到这一点,我们这个图是最重要的,在这个图片里面,它不仅仅是有关我们整个努力的结果,而是有关我们整个产品本来的概念。所以通过我们这样一种协作,协作就是整体的核心。

    我们已经来到中国25年了,我们希望能够跟中国很多初创的企业合作。

相关报告
  • 《联发科技发布芯片新品Helio P90》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2018-12-14
    • 12月13日——联发科技正式发布Helio P90系统单芯片,搭载全新超强AI引擎APU 2.0,AI处理速度大幅提升。Helio P90拥有旗舰级AI算力,运算性能高达1127 GMACs (2.25TOPs),达业界领先水平。 MediaTek Helio P90应用处理器 APU 2.0 采用联发科技的融合 AI (fusion Al)先进架构,相较于Helio P70和Helio P60,不仅能够带来全新的AI体验,且算力提高4倍。Helio P90实现多核多线程处理复杂的AI任务,在处理进程提速的同时延长电池使用寿命。 联发科技无线通信事业部总经理李宗霖表示:Helio P90能助力终端设备厂商生产出拍摄功能卓越非凡的智能手机,具备超高性能与领先的AI功能,同时保证电池使用寿命。 Helio P90内置升级版AI引擎APU 2.0,能够多方位提供由APU 2.0驱动的图像优化服务。它将重新定义消费者对智能手机拍摄功能的体验,开启超高清智能手机拍摄的新时代。 MediaTek Helio P90采用八核架构,集成两个ARM A75处理器,工作主频率为2.2GHz,与6个A55处理器,工作主频率为2.0GHz,同时搭载Imagination Technologies的PowerVR GM 9446 GPU。 联发科技最新的 CorePilot 技术确保芯片能够以最高效的方式在八核之间实现运算资源的最优配置,确保了HelioP90能够充分发挥八核架构优势,能够以最低功耗为用户提供最高性能,将电池寿命与随需供电完美结合。 凭借强大的AI引擎,Helio P90能够以更快的速度和更加灵活的方式支持复杂性更高的人工智能需求,如进行人体姿态辨识,姿态追踪和分析人体运动。 并且,除Google智能镜头、深度学习人脸辨识、实时美化、物体和场景识别之外,它还能够促进实现人工现实(AR)与混合现实(MR)在终端进一步商用,同时还可支持其他图像实时增强应用。 联发科技 NeuroPilot SDK 除了可以完全兼容谷歌 Android Neural Networks API (AndroidNNAPI)的平台,还提供完整的开发工具,为开发商及设备制造商充分利用 TensorFlowTF Lite、Caffe和Caffe2等业界常用框架结合HelioP90研发AI创新应用程序提供了开放型平台。 MediaTek Helio P90支持超大的48MP摄像头或24+16MP双摄像头,能够捕捉最优质的画面,为消费者带来最高清的领先智能手机拍摄体验。 用户能以48MP的分辨率和高达30恢每秒(FPS)的速度体验零时延快门拍摄,也可以选用480FPS的超高清慢镜头记录每个不易捕捉的瞬间。 联发科技为成像技术领域带来了一场真正的分辨率革命,其升级的三重图像信号处理器(ISPs)能够处理14位RAW和10位YUV,为摄影爱好者提供更加灵活的高质量成像的拍摄工具,引领智能手机超高清拍摄潮流。 全新ISP-A1引擎,为提供AI拍摄体验而设计,能够在弱光和运动条件下实时准确地检测人脸和场景,让每个用户都能够更加省心省力地拍摄精彩时刻。 Helio P90支持双 4G SIM 卡双 VoLTE, Cat-12(DL)/Cat-13(UL)LTE网络标准,保证最佳网络通话质量。同时,MediaTek Helio P90 还支持4X4 MIMO 和256QAM,集成2x2802.11ac和蓝牙5.0,即使在人口稠密的地区,也能提供更好的数据吞吐量与网络覆盖。
  • 《AMD前芯片研发总监创业两年多 研发了一款超越Intel/NVIDIA的AI视觉芯片》

    • 来源专题:集成电路制造与应用
    • 编译者:shenxiang
    • 发布时间:2018-10-24
    • 新一轮的AI热潮让一批创业者努力为自己贴上AI标签以便搭上这一波热潮的红利,当然也有一批创业者在AI热潮到来之前就早有准备。AI芯片就是许多早有准备的创业者看好的创业方向,他们想要为AI语音或视觉提供更好的芯片,从目前的情况看,AI视觉芯片领域的竞争相对激烈。值得注意的是,由AMD前芯片研发总监带领的团队用时两年多研发了一款声称超越Intel Movidius MyriadX和Nvidia Tegra X2的AI视觉芯片,事实果真如此? 世界第一的AI视觉芯片来自初创公司 伴随AI的热潮,全球范围内无论是传统芯片巨头、科技企业还是初创公司都对AI芯片有非常高的热情。Intel在2016年收购了硅谷初创视觉处理公司Movidius增强了其在视觉芯片领域的实力,Nvidia也有图像性能强大的Tegra移动处理器。国内,地平线机器人、NextVPU、耐能、云天励飞、寒武纪科技等都是AI视觉芯片创业公司的代表。 越来越多公司的加入也让AI视觉处理器市场的竞争变得越来越激烈,NextVPU(肇观电子)CEO冯歆鹏表示:“AI视觉处理器是一个正在兴起的市场,无论是对巨头还是创业企业都非常重要。我们判断视觉处理器的市场规模未来一定会超过CPU市场。” 他同时表示:“目前的时间点比较有意思,市场的需求已经起来,但芯片处理AI视觉需求的时候速度慢且开发痛苦,价格也很昂贵。如今这个市场还是比较蓝海的情况,英特尔和英伟达这样的芯片巨头在往前走,但是他们的进展相对慢一些,因为新兴的市场规模还比较小,大公司往往是做大市场服务大客户,新兴市场难以撑起大公司的整个项目。从历史的经验看,这种科技变革的节点小公司更有优势。在AI视觉处理器领域,可以说目前我们微微领先。” 冯歆鹏口中微微领先的AI视觉芯片就是被称为世界第一的AI视觉处理器NextVPU N171,这个第一如何理解?冯歆鹏表示,在端侧,我们的AI视觉处理器的几何引擎每秒能计算2.48亿个3D点,这个结果把目前世界领先的的水平推进了一大步。另外,N171的CNN引擎跑深度神经网络例如ResNet的结果也比Nvidia Tegra X2高好几倍。每秒3D点云的性能也比Intel Movidius Myriad2、Nvidia Tegra X2高几倍,还支持其它AI视觉处理器不支持的像素级理解和语义分割。 这家推出被称为世界第一AI视觉处理器的公司是创立于2016年5月的NextVPU,不过NextVPU创立之初首先推出的是辅助盲人感知世界和出行的智能眼镜,原因从冯歆鹏创业的历程就能找到。冯歆鹏在创业前担任AMD的研发总监,与创业搭档周骥博士在大概2012年的时候就开始关注计算机视觉的方向,到了2016年他们觉得很多机会都已经出现,不能再继续等下去,最后两人就在2016年创立了NextVPU(Next Vision Processing Unit, 未来的视觉处理器),中文名为肇观(有开启视觉的含义),冯歆鹏担任CEO,周骥担任CTO。虽然从创业之初就准备做芯片,但他们觉得2016年整个行业还没起来,单一的环节做得好没什么用,因此不得不先做一个产品。当然,从他们创业的第一天开始就在为芯片做准备,也就后来N171里的核心自研IP。 为何能开发出超越芯片巨头的AI芯片? 从数据上看,NextVPU N171可以被称为世界第一的AI视觉芯片,不过更让人关注的是初创公司为何能打造出超越芯片巨头的终端AI视觉芯片?这需要从NextVPU N171芯片的定位到功能去理解,创业之前冯歆鹏就已经明确了要做一款AI视觉芯片,但AI芯片可以分为云端和终端芯片,不同的选择将面对不同的市场竞争。冯歆鹏表示,云端和终端都有很多机会,从英特尔的收入分布看终端和服务器芯片的收入比约为5:1,其中服务器芯片出货量少、单价高利润率也比较高,但是这一市场竞争非常激烈,几乎是巨头垄断,更适合较大的企业。终端芯片无论是市场总量还是芯片需求量都远大于服务器市场,并且终端市场更具多样性,用户的需求也有一定的差别,小公司进入和发展都比较有利。 选择了终端市场之后,接下来需要定义产品功能。冯歆鹏指出,计算机视觉面临几何和理解两大挑战,当然,无论是几何还是理解都有大量的需求,比如客户想通过3D环境扫描做一个模型构建地图,或者生产线上不同的零件区分,这就需要VSLAM、多目、结构光、TOF等技术,也需要CNN识别,检测和分割等技术。看到这些需求并且了解到如今的芯片不能满足需求之后,我们芯片的功能大概就确定了。 因此,NextVPU N171具备的一大特色就是集成了三个自主IP:几何引擎、深度神经网络引擎(CNN)、图像成像引擎(ISP)。几何引擎用于同时处理传感器获得的数据、坐标空间信息、时间等多输入的信息,也就是对三维点组成的点云做各种计算,这是所有VSLAM三维重建的基础,机器人、汽车、AR和VR领域等对此都有急迫的需求。据悉,N171几何引擎每秒能处理2.48亿个3D点,处于业界领先的水平。 深度神经网络引擎支持图像的检测识别、分割以及各种主流的CNN算法。模型从简单到复杂,逻辑从几层到几百层都支持。冯歆鹏强调,深度神经网络引擎我们花了很长时间去做,并且跑越复杂的模型我们的深度神经网络引擎的利用率越高,越流行的网络模型,利用率也越高,几乎可以达到理论极限。 视觉成像引擎则是对图像进行处理,为了能够让机器看懂世界,视觉成像引擎做了非常多特殊的处理的调教,动态范围可以做到150dB,这是基于机器视觉的需求所决定。 除了三大自主IP,N171还有一大特色就是可独立运行操作系统,这个功能是通过N171中的多核CPU来实现。对于这个功能,冯歆鹏表示许多用户习惯于用像Linux这样的操作系统做文件的存储和调取,然后做日志,而非使用特殊的轻量级内核。要实现这个功能,有两种方式,一种是分布式的做法,在常用应用处理器AP芯片的基础上增加一个AI协处理器,第二种方式是异构融合,也就是将两个芯片做集成。 “我们接触到的所有客户都倾向于第二种方式,所以我们集成了多核CPU能够运行操作系统,让我们的芯片既能满足传统需求,也有很好地AI性能。另外,集成度越高,芯片内部的数据传输及交换的成本也能越低。”冯歆鹏补充表示。 由此不难看出,发现市场的痛点和需求之后,根据客户的需求一步步明确产品的形态和功能打造满足市场需求的产品,通过自研的IP,以ASIC芯片的形式实现,N171最终获得比传统芯片巨头性能更强的芯片自然也就可以理解。不过,对市场需求的正确判断以及好的产品理念还不足以让一款芯片成功流片,背后的团队也非常关键。 冯歆鹏和周骥都来自AMD,我们知道AMD是提供CPU,也能提供GPU的高性能计算芯片公司,而AI需要的就是高性能芯片,因此从Intel、Nvidia、AMD这三家高性能计算芯片公司出来的团队在做AI芯片的时候在经验上更具优势。冯歆鹏参与过50多款CPU和GPU的设计,对于高性能计算芯片里的流水线设计、数据的分布式存储处理等都非常有经验。除了基于已有的经验积累用两年多的时间先做IP然后做SoC,N171在其他方面也有巨大的投入。 能否成功落地? 在设计、功能都能够满足市场需求之后,芯片的实际性能成为考验一款芯片能否成功落地的关键。对于N171这样的高性能芯片,无法回避的问题就是高性能带来的高功耗。冯歆鹏表示:“一款芯片的设计只要遵循规则不出错,性能和功耗的实际值和理论值基本会遵循一条曲线。我们产品的性能和功耗水平同样基于客户的需求,根据客户产品设计的电池容量以及他们期望的续航时间,可以推导出芯片功耗的具体水平,只要功耗不大到一定的程度客户都能够接受。当然N171的性能和功耗也可以调教,不同的时钟频率对应不同的功耗,也可以根据客户的需求进行配置。“ N171虽然是高性能芯片,但并没有采用最先进的7nm工艺,而是选择了28nm工艺,这主要是从市场的角度出发,使用成熟的28nm工艺的性能和功耗就能够满足这款芯片目标市场和客户的需求。 而在N171芯片的目标市场之中,汽车市场对于芯片的稳定性、实时性、安全性都有更高的要求。为了进入这一市场,冯歆鹏表示:“我们的芯片首先满足ISO TS16949、AEC-Q100两个车规标准,也正在做ISO26262标准。另外,汽车市场比消费市场和工业市场有一些差异化的需求,比如需要支持零下40度到零上125度的温度,还要求芯片在出现错误之后能够自己恢复和校准。因此我们用更好的封装材料保证其稳定性、测试的流程也更加复杂。基于之前设计波音飞机上使用的CPU的经验,我们对这些都很有经验,只是需要付出更多的时间和成本。” 至于火热的安防市场,他们A轮的领投方是中电海康基金,这个基金背后是中电科技集团和中电海康集团。中电海康集团下属的海康威视是国内安防领域的龙头,他们在积极布局智能摄像头,NextVPU N171里的很多设计和功能也是为安防考虑。 既然基于相同晶圆和裸片的N171能够满足汽车和工业市场的需求,那么消费级市场当然也是NextVPU不会错过的。据悉,N171的第一代芯片已经成功流片,测试的结果也非常好,现在正处于客户导入的阶段,距离正式的上市还有几个月时间。冯歆鹏透露目前的合作客户已经涵盖车载、安防和机器人,希望未来N171还能做第二代、第三代,持续做下去。 在AI的热潮下,许多有经验有实力敏锐的大咖都开始了创业,他们希望能够在新的浪潮里发挥更大的价值,很显然NextVPU的团队就属于这一的创业团队。在技术、产品都能够比肩芯片巨头的情况下,芯片的实际落地更考验创业团队,在这个过程中会遇到很多意想不到的事情。相信我们都愿意看到NextVPU的产品能够不断迭代,为计算机视觉领域带来更好的AI芯片,也能够增强中国芯片的实力。