《青岛能源所发明工业微藻染色体大片段精准切除技术》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2021-03-19
  • 作为一种“负碳”的光合细胞工厂,工业微藻能将阳光、海水和二氧化碳规模化地转化为油脂与氢,服务于洁净能源的供给。但是藻类基因组的大片段操作通常极为困难,长期阻碍着藻类底盘细胞的开发。针对这一瓶颈问题,青岛能源所单细胞中心建立了精确可控的藻类染色体大片段DNA切除技术,首次示范了>100 Kb DNA片段的单重与连续删减,从而为“最小藻类基因组”的设计和“最简植物底盘细胞”的构建打开了大门。相关成果发表在《植物学期刊》(The Plant Journal)上。

      除了光合作用、碳浓缩、油脂合成等关键功能模块以外,藻类基因组上通常还包括很多由可移动元件、重复序列等组成的“功能冗余”区域。这些大片段染色体DNA既是一种额外的代谢负担,也会影响基因组的可控性与稳定性。因此,“大刀阔斧”式精确切除这些大片段的“染色体手术刀”,是构建光驱固碳底盘细胞的必备工具。但是,由于缺乏这样的“染色体手术刀”,藻类中从未有大片段基因组DNA切除的报导。
      作为一种可规模化室外培养的工业产油微藻,微拟球藻(Nannochloropsis spp.)已成为光驱合成生物技术研究和产业的重要模式体系之一。为了开发大刀阔斧式的“染色体手术刀”,单细胞中心王勤涛助理研究员带领的研究小组,根据NanDeSyn数据库中的大量转录组和蛋白组数据,定义了海洋微拟球藻基因组上的一系列不表达或低表达区域(Low-Expression Regions, LERs),作为切除的目标区域。
      研究人员设计了一个基于CRISPR/Cas的“染色体手术刀”,通过两条用于定义剪切位置的向导RNA(gRNA)的共表达,实现了位于30号染色体5’端的基因组中最大LER中目标片段(81 Kb)的精确删除。同时发现,“染色体手术”后,染色体末端端粒能够自动重生,这导致长达110 Kb的30号染色体5’端臂(占该染色体长度的22%、含24个基因)得以一次性地切除。在此基础上,研究人员通过同时表达4条gRNA,实现了分别位于30号与9号染色体上的最长和次长的两个LER(最大删除合计214 Kb,含52个基因)在同一细胞中的并行切除。
      利用“拉曼组”等单细胞精度的代谢表型分析手段,研究人员惊奇地发现,尽管经历了这些染色体大片段切除手术,微藻细胞在生长速度、生物量、潜在最大光合速率、叶绿素荧光非光化学猝灭、油脂含量和脂肪酸不饱和度等关键性状却几乎没有受到影响。在生长速度和生物量累积速率上,一些工程株甚至有小幅却显著的加快。这些发现表明,通过这种染色体手术来构建“最小藻类基因组”,具有相当的可行性。
      针对微拟球藻,单细胞中心已发表了基于CRISPR/Cas的基因敲除技术、基于RNAi的基因敲低技术等高效遗传操作工具与工程株库,并通过其组织的“微拟球藻设计与合成数据库”(NanDeSyn;  http://www.nandesyn.org),推动国内外工业微藻研究与产业群体的资源共享。此次染色体大片段切除技术的发表,将进一步推动微拟球藻为光驱合成生物技术研究和产业做出特色贡献,同时也为设计“最简植物底盘细胞”、支撑“负碳生物制造”,奠定了一个重要的方法学基础。
      该工作由单细胞中心徐健研究员主持完成,得到了国家重点研发计划、国家自然科学基金委、韩国科学技术信息通信部等的资助。(文/王勤涛  图/刘阳)

     

相关报告
  • 《中国科学院青岛能源所发展出工业微藻染色体大片段切除技术》

    • 来源专题:转基因生物新品种培育
    • 编译者:王晶静
    • 发布时间:2021-03-29
    • 作为一种“负碳”的光合细胞工厂,工业微藻能将阳光、海水和二氧化碳规模化地转化为油脂与氢,服务于洁净能源的供给。然而,藻类基因组的大片段操作通常极为困难,长期阻碍着藻类底盘细胞的开发。针对这一问题,中国科学院青岛生物能源与过程研究所单细胞中心建立了精确可控的藻类染色体大片段DNA切除技术,首次示范了>100 Kb DNA片段的单重与连续删减,从而为“最小藻类基因组”的设计和“最简植物底盘细胞”的构建打开了大门。相关研究成果发表在《植物学期刊》(The Plant Journal)上。 除了光合作用、碳浓缩、油脂合成等关键功能模块以外,藻类基因组通常还包括很多由可移动元件、重复序列等组成的“功能冗余”区域。这些大片段染色体DNA既是一种额外的代谢负担,影响基因组的可控性与稳定性。因此,“大刀阔斧”式精确切除这些大片段的“染色体手术刀”,是构建光驱固碳底盘细胞的必备工具。由于缺乏这样的“染色体手术刀”,藻类中从未有大片段基因组DNA切除的报导。 作为一种可规模化室外培养的工业产油微藻,微拟球藻(Nannochloropsis spp.)已成为光驱合成生物技术研究和产业的重要模式体系之一。为了开发大刀阔斧式的“染色体手术刀”,单细胞中心助理研究员王勤涛带领的研究小组,根据NanDeSyn数据库中的大量转录组和蛋白组数据,定义了海洋微拟球藻基因组上的一系列不表达或低表达区域(Low-Expression Regions, LERs),作为切除的目标区域。 科研人员设计了一个基于CRISPR/Cas的“染色体手术刀”,通过两条用于定义剪切位置的向导RNA(gRNA)的共表达,实现了位于30号染色体5’端的基因组中最大LER中目标片段(81 Kb)的精确删除。研究发现,“染色体手术”后,染色体末端端粒能够自动重生,导致长达110 Kb的30号染色体5’端臂(占该染色体长度的22%、含24个基因)得以一次性地切除。在此基础上,研究人员通过同时表达4条gRNA,实现了分别位于30号与9号染色体上的最长和次长的两个LER(最大删除合计214 Kb,含52个基因)在同一细胞中的并行切除。 利用“拉曼组”等单细胞精度的代谢表型分析手段,研究表明,尽管经历了这些染色体大片段切除手术,微藻细胞在生长速度、生物量、潜在最大光合速率、叶绿素荧光非光化学猝灭、油脂含量和脂肪酸不饱和度等关键性状却几乎没有受到影响。在生长速度和生物量累积速率上,一些工程株甚至有小幅却显著的加快。这些发现表明,通过这种染色体手术来构建“最小藻类基因组”,具有相当的可行性。 针对微拟球藻,单细胞中心已发表了基于CRISPR/Cas的基因敲除技术、基于RNAi的基因敲低技术等高效遗传操作工具与工程株库,并通过其组织的“微拟球藻设计与合成数据库”(NanDeSyn,http://www.nandesyn.org),推动国内外工业微藻研究与产业群体的资源共享。此次染色体大片段切除技术的发表,将进一步推动微拟球藻为光驱合成生物技术研究和产业做出特色贡献,也为设计“最简植物底盘细胞”、支撑“负碳生物制造”,奠定了方法学基础。 该工作由单细胞中心研究员徐健主持完成,得到国家重点研发计划、国家自然科学基金委员会等的资助。 论文链接:https://onlinelibrary.wiley.com/doi/10.1111/tpj.15227
  • 《青岛能源所发明高通量高稳定性的拉曼流式细胞术pDEP-DLD-RFC》

    • 来源专题:生物育种
    • 编译者:姜丽华
    • 发布时间:2023-04-21
    • 单细胞拉曼光谱(SCRS)能非标记、非侵入性、无损、全景式地揭示细胞代谢状态,因此基于SCRS的活体单细胞流式检测(Raman Flow Cytometry,RFC),有着广阔应用前景。近日,青岛能源所单细胞中心和青岛星赛生物合作发明了基于介电诱导确定性侧向位移完成单细胞聚焦、捕获/释放的拉曼流式检测技术pDEP-DLD-RFC,并证明其针对人体细胞(肿瘤)、植物(微藻)、酵母和细菌等多种细胞类型的广谱适用性。基于此推出的FlowRACS 3.0仪器,为活体单细胞代谢表型组的高通量检测提供了全新工具。该工作近日发表于《先进科学》(Advanced Science)。 活体单细胞代谢表型组的流式检测,在微生物资源挖掘、细胞工厂筛选、酶元件表征、生物过程监控、临床诊疗等方面,具有共性的支撑作用。与荧光流式和质谱流式等现有流式细胞检测手段相比,拉曼流式具有无需标记细胞、活体检测、信息量丰富等优势,因此是一种具有广阔应用前景的细胞分析手段。但是,高通量拉曼流式技术的应用受限:首先,如何提高样品的普适性,以适用于不同细胞类型与不同表型的检测;其次,如何提高检测的通量,以实现高度异质性细胞群体的深度检测;最后,如何提高运行的稳定性,以支撑高度可靠的仪器使用流程。  针对上述问题,青岛能源所单细胞中心王喜先、任立辉、刁志钿、何曰辉等带领的研究小组发明了“介电诱导确定性侧向位移实现单细胞聚焦、捕获/释放的拉曼流式检测技术”(Positive Dielectrophoresis Induced Deterministic Lateral Displacement-based Raman Flow Cytometry,pDEP-DLD-RFC)。首先,通过宽流场高流量的进样策略,有效防止细胞沉降,从而实现了长时间稳定运行(>5小时);其次,通过介电诱导细胞确定性侧向位移,实现宽场中细胞高效聚焦地流经检测位点,从而保证了拉曼检测效率;最后,通过施加检测时间依赖的周期性介电场,实现了单细胞的快速捕获/释放,以满足各种不同代谢表型的普适性、高通量检测。   基于上述关键技术突破,研究小组研制成功兼具广谱通用性、高通量、运行稳定性等性能的高通量拉曼流式检测系统,并开发了一系列应用:肿瘤细胞分类、微藻合成过程监控、产油酵母多表型监控、细菌药敏性检测。   第一,植物生物制造过程的代谢监控。基于共振拉曼信号,实现了雨生红球藻中虾青素含量的实时监测,从而示范了单细胞精度的虾青素累积过程细胞工厂代谢状态的监控,并考察了“高光”和“缺氮”等条件对细胞虾青素累积速度及其同步性的影响。其虾青素含量检测速度达~2700 events/min,为目前最高的自发拉曼检测/分选通量。   第二,酵母生物制造过程的代谢监控。基于非共振拉曼信号,示范了油脂酵母中细胞代谢活力、甘油三脂含量、油脂不饱和度等多个关键代谢表型的同步动态监控,进而通过拉曼组机器学习、拉曼组内关联分析(Intra-Ramanome Correlation Analysis,IRCA)等算法,实现了单细胞代谢状态(准确率>96%)的实时鉴定,以及细胞内代谢物相互转化网络的实时重建。   第三,细菌药敏性的流式快检。基于单细胞中心前期提出的重水饲喂单细胞拉曼药敏原理,以大肠杆菌和多种常见抗生素为例,开发了流式药敏快检技术,并通过与拉曼药物应激条形码(Raman Barcode for Cellular Stress-response,RBCS)、IRCA、拉曼组机器学习等算法,证明该流式药敏快检技术还能实时地判断单菌体精度的药物应激状态、构建细胞内代谢物相互转化网络等,从而揭示细菌-药物互作机制。此外,流式检测大大提高了药敏检测中SCRS取样深度,对于识别群体中通常占比很低的耐药细胞,具有重要的意义。   第四,肿瘤细胞类型的快速区分。基于SCRS中信息丰富的指纹区,以膀胱癌、肺癌、肾细胞癌、乳腺癌等细胞株为例,证明流式拉曼技术耦合拉曼组机器学习算法,能以平均>95%的准确率,完成肿瘤细胞类型的快速判别。该方法对于肿瘤细胞质量检测等应用具有潜在的应用价值。   与转录组、蛋白组和代谢物组相比,拉曼组能表征单细胞精度的底物代谢、产物合成、环境应激性、化合物相互转化等关键代谢表型,而具广谱适用、活体、无损、非标记、全景式表型、可分辨复杂功能、快速、低成本、能耦合下游测序、质谱或培养等优势,因此拉曼组是一种更接近于“功能”、更适合于临床、工业等场景的单细胞表型组。为了支撑人体、动植物和微生物拉曼组数据的自动化采集与分析,单细胞中心与星赛生物基于pDEP-DLD-RFC技术,推出了高通量流式拉曼分析/分选仪FlowRACS 3.0,将大大加速拉曼组平台的推广应用。   该工作由单细胞中心马波研究员和徐健研究员主持,与青岛星赛生物合作完成,得到了国家重点研发计划、国家自然科学基金委和山东省自然科学基金委的支持。(文/王喜先 图/刘阳)   原文链接:https://doi.org/10.1002/advs.202207497