《探索 | 钻石用于量子传感》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-06-20
  • University of Tsukuba的科学家演示了如何利用超快光谱学来提高量子传感器的时间分辨率。通过测量金刚石晶格中相干自旋的方向,他们表明即使在很短的时间内也可以测量磁场。这项工作可以促进超高精度测量领域的发展,即量子计量学,以及基于电子自旋的“自旋电子”量子计算机。

    量子传感提供了以纳米分辨率极其精确地监测温度以及磁场和电场的可能性。通过观察这些性质如何影响传感分子内的能级差异,纳米技术和量子计算领域的新途径可能变得可行。然而,由于发光寿命有限,传统量子传感方法的时间分辨率以前被限制在微秒范围内。需要一种新的方法来改进量子传感。

    现在,由University of Tsukuba领导的一个研究小组开发了一种新方法,用于在著名的量子传感系统中实现磁场测量。氮空位(NV)中心是金刚石中的一种特殊缺陷,其中两个相邻的碳原子被一个氮原子和一个空位所取代。这个位置额外电子的自旋状态可以用光脉冲读取或相干操纵。

    “例如,负电荷的NV自旋态可以用作具有全光读出系统的量子磁强计,即使在室温下也是如此,”第一作者Ryosuke Sakurai说。研究小组使用了一种“inverse Cotton-Mouton”效应来测试他们的方法。当横向磁场产生双折射时,就会产生正常的Cotton-Mouton效应,双折射可以将线偏振光变为椭圆偏振。在这个实验中,科学家们做了相反的事情,用不同偏振的光来产生微小的受控局部磁场。

    作者Muneaki Hase和他的同事Toshu An表示:“利用非线性光磁量子传感,可以测量具有高时空分辨率的先进材料中的局部磁场或自旋电流。”该团队希望,这项工作将有助于使量子自旋电子学计算机成为敏感的自旋态,而不仅仅是像当前计算机那样的电荷。这项研究还可能使新的实验能够观察磁场的动态变化,甚至在实际设备操作条件下观察单个自旋。

    图:测量的光学装置

相关报告
  • 《探索 | 基于强化学习算法的量子传感》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-04-12
    • 量子传感器是根据量子力学规律、利用量子效应设计的、用于执行对系统被测量进行变换的物理装置。作为量子技术最具潜力的应用之一,它旨在利用量子资源提高测量灵敏度。正如理论上量子计算机可以处理传统计算机无法解决的问题,量子传感器也可以将灵敏度和准确度提高到一个新的水平。其中,基于光学相位的传感受到科研工作者的广泛研究,对传感器件的大规模开发至关重要。 图1 集成光子量子传感器的自适应多相估计机器学习 但量子传感器如果想要保持高精度的测量水平,需要定期表征和校准。一般而言,这种校准是一项极其复杂的资源密集型工作。特别是用于评估多个参数的传感系统,因为需要花费大量的计算时间去测量并分析结果。 机器学习算法的出现为校准工作提供了一个强有力的工具,极大地降低了工作量。其中有一种称之为“强化学习”(RL)的算法,它是介于监督学习和非监督学习的另外一种学习方式。简单来说就是让计算机实现从一开始什么都不懂,脑袋里没有一点想法,通过不断地尝试,从错误中学习,最后找到规律,学会达到目的的方法。一个智能体采取行动给环境,环境给他新的奖励和新的状态,这个智能体根据他所受的奖励和新的状态,来采取下一步的行动形成一个闭环,这就是强化学习。直到最近才出现一些通过利用RL 算法优化量子问题的研究报道。但其中大多数工作仍依赖于描述系统的模型的先验知识。恰恰相反,理想的策略是一种完全无模型的方法,当代理的奖励不依赖于显式系统模型时,是有可能实现的。 图2 深度学习协议方案 基于此,意大利罗马大学物理系和光子学与纳米技术研究所(IFN-CRN)的研究团队成功开发了一种无模型方法,将应用范围扩大到自适应多相估计。该研究以“Deep reinforcement learning for quantum multiparameter estimation”为题发表在Advanced Photonics上。他们在高度可重构的集成光子平台上验证了无模型方法的有效性。实验中使用 RL 算法来优化多个参数评估,并将其与深度神经网络相结合,该网络在每次测量后更新贝叶斯后验概率分布。因为在任何步骤都不需要系统功能模型,该协议以完全黑盒的方式处理量子多参数传感器。重要的是,该团队证明了在资源有限的情况下通过他们的协议可以有效增强性能,并将其与非自适应策略进行比较,实现了更好的评估。
  • 《探索 | 利用激光直接控制原子核的自旋以用于编码量子信息》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-02-17
    • 图:显示了两个波长不同的激光束如何影响原子核周围的电场,如箭头所示,以推动原子核自旋的方式推动电场 原则上,基于量子的设备,如计算机和传感器,在执行许多复杂任务时,可以大大优于传统的数字技术。但是,尽管科技公司以及学术和政府实验室进行了大量投资,但在实践中开发此类设备一直是一个挑战性的问题。 目前最大的量子计算机仍然只有几百个“量子比特”,即数字比特的量子等价物。 现在,麻省理工学院的研究人员提出了一种制造量子比特并控制它们读写数据的新方法。该方法在现阶段是理论上的,它基于测量和控制原子核的自旋,使用两种颜色略有不同的激光器发出的光束。 相关研究发表在《Physical Review X》杂志上的一篇论文中。 长期以来,核自旋一直被认为是基于量子的信息处理和通信系统的潜在构建块,光子也是如此,光子是电磁辐射的离散包或“量子”。但要让这两个量子物体协同工作很困难,因为原子核和光子几乎没有相互作用,它们的自然频率相差六到九个数量级。 在麻省理工学院团队开发的新过程中,入射激光束频率的差异与核自旋的跃迁频率相匹配,从而推动核自旋以某种方式翻转。 Cappellaro教授说:“我们发现了一种新颖、强大的方法,可以将核自旋与激光产生的光光子相结合。”。“这种新颖的耦合机制使它们能够进行控制和测量,这使得使用核自旋作为量子比特成为一种更有前途的尝试。” 研究人员表示,这个过程是完全可调的。例如,其中一个激光器可以被调谐到与现有电信系统的频率相匹配,从而将核自旋转变为量子中继器,从而实现远距离量子通信。 以前使用光影响核自旋的尝试是间接的,而是与围绕核的电子自旋耦合,这反过来又会通过磁相互作用影响核。但这需要附近存在不成对的电子自旋,并导致核自旋上的额外噪声。对于新方法,研究人员利用了许多核具有电四极的事实,这导致了与环境的电四极相互作用。这种相互作用可以受到光的影响,从而改变原子核本身的状态。 “核自旋通常是非常弱的相互作用,”Li说,“但通过利用某些核具有电四极的特性,我们可以诱导这种二阶非线性光学效应,这种效应直接耦合到核自旋,而没有任何中间电子自旋。这使我们可以直接操纵核自旋。” 除其他外,这可以精确识别甚至绘制材料的同位素,而拉曼光谱是一种基于类似物理学的成熟方法,可以识别材料的化学和结构,但不能识别同位素。研究人员表示,这种能力可能有很多应用。 至于量子存储器,目前用于或考虑用于量子计算的典型设备具有相干性时间,这意味着存储的信息可以可靠地保持完整的时间量,通常以微小的几分之一秒来测量。但对于核自旋系统,量子相干时间是以小时为单位测量的。 该团队表示,由于光学光子被用于通过光纤网络的远程通信,因此将这些光子直接耦合到量子存储器或传感设备的能力可能会为新的通信系统带来重大好处。此外,该效应可用于提供将一组波长转换为另一组波长的有效方式。“我们正在考虑使用核自旋来转换微波光子和光学光子,”Xu说。 到目前为止,这项工作是理论上的,因此下一步是在实际的实验室设备中实现这一概念,可能首先是在光谱系统中。“这可能是原理证明实验的一个很好的候选,”Xu说。他说,在那之后,他们将研究诸如记忆或转导效应等量子器件。