《携带CRISPR系统的新型纳米颗粒 可实现对细胞基因组的精准编辑》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2017-11-23
  • 近日,刊登在国际著名杂志Nature Biotechnology上的一篇研究报告中,来自MIT的科学家开发出了一种新型纳米颗粒,这种纳米颗粒能够运输CRISPR基因编辑系统,并对小鼠机体的基因进行特异性修饰;因此研究人员就能够利用纳米颗粒来携带CRISPR组分,从而就消除了使用病毒的需要。

    利用这种新型的运输技术,研究者就能对大约80%的肝脏细胞进行特定基因的切割,这或许就能达到目前在成体动物中应用CRISPR技术的最佳成功率。 研究者Daniel Anderson教授说道,让我们非常激动的是,我们制造了这种特殊的纳米颗粒,其能被用来永久特异性地编辑成年动物机体肝细胞中的DNA;本文研究中,研究者所研究的一种名为Pcsk9的基因能调节机体胆固醇的水平,而人类机体中该基因的突变或许和一种名为家族性高胆固醇血症的罕见疾病有关,目前FDA批准的两种抗体药物能够抑制Pcsk9基因的表达,然而这些抗体药物需要在患者后半生中定期服用,而新型的纳米技术或能永久性地对该基因进行编辑,同时就为治疗这种罕见疾病提供了新的治疗思路。

    靶向作用疾病

    很多科学家都在尝试开发安全有效的方法来运输CRISPR所需的组分,其中包括DNA切割酶Cas9和一个短链RNA,其能够引导酶类进入基因组的特殊位点,指导Cas9来发挥切割作用。

    在很多情况下,科学家们依赖于病毒来运输Cas9基因和RNA链,2014年,研究人员Anderson及其同事通过研究开发了一种新型的非病毒运输系统,利用CRISPR技术来有效治疗酪氨酸血症(一种肝脏疾病),然而这种运输技术需要进行高压注射,这就会对患者机体肝脏带来潜在的损伤作用。

    后来,研究人员就通过将编码Cas9的信使RNA包裹到纳米颗粒中来替代病毒,从而就实现了不用高压注射也能够运输CRISPR的关键组分,利用这种技术,研究者就能够对大约6%的肝脏细胞进行基因靶向编辑,这就足以治疗酪氨酸血症了。这项研究中,研究人员利用纳米颗粒来运输Cas9和RNA导向链,并不需要病毒,为了能够有效运输RNAs,研究者首先必须对RNA进行化学修饰来保护其免于机体酶类的降解作用。

    研究人员分析了Cas9和sgRNA(RNA导向链)形成的复合体的结构,目的在于阐明到底是RNA导向链的哪一部分能被化学修饰,还不干扰两个分子的结合,基于前期分析,研究者就开发并且检测了多种可能性的修饰组合。研究者Yin说道,我们能够利用Cas9和sgRNA复合体来作为一种引导工具,并进行测试来确保我们可以对70%的RNA导向链进行修饰,对其进行修饰并不会影响sgRNA和Cas9的结合,而增强化学修饰同样还会增强其二者结合的活性。

    对肝脏进行重编程

    随后研究人员将这些修饰后的RNA导向链(增强型的sgRNA)包裹入脂质纳米颗粒,此前研究者利用这种纳米颗粒将其它类型的RNA运输到肝脏中,而本文研究中他们将这些脂质纳米颗粒注射到了携带能编码Cas9的mRNA纳米颗粒的小鼠机体中。研究者重点对调节胆固醇水平的Pcsk9基因进行了研究,在超过80%的肝脏细胞中都能消除这种基因,从而就无法在这些小鼠中检测到Pcsk9蛋白的存在,被治疗的小鼠机体总胆固醇水平也会出现35%的下降。

    目前研究人员正在寻找是否能利用该技术治疗其它肝脏疾病;研究者Anderson认为,一种能特异性关闭基因表达的完全合成性的纳米颗粒或许就能作为一种强大的工具,这并不仅仅是针对Pcsk9基因,还包括了其它疾病,肝脏是人体重要的器官,同时其也是很多疾病发生的来源,如果能实现对肝脏细胞中DNA的重编程,研究人员或许就能够有效遏制多种肝脏来源的疾病了;本文研究中,研究人员所开发的纳米技术新应用未来或能为基因编辑研究开辟多种途径。

  • 原文来源:https://www.nature.com/articles/nbt.4005
相关报告
  • 《科学家开发新型纳米颗粒 可更高效递送CRISPR基因编辑工具》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-07-29
    • 在一项新的研究中,来自中国科学院和美国塔夫茨大学的研究人员开发出一种在肝脏中显著改善的递送CRISPR/Cas9基因编辑工具的方法。这种递送方法使用生物可降解的合成脂质纳米颗粒,将这些基因编辑工具递送到细胞中,精确地改变细胞的遗传密码,效率高达90%。根据这些研究人员的说法,这些纳米颗粒是迄今为止报道的最有效的CRISPR/Cas9递送工具之一,并且可能有助于克服技术障碍,使得基因编辑在一系列临床治疗应用中得以实现。相关研究结果近期发表在Advanced Materials期刊上,论文标题为“Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles”。 CRISPR/Cas9基因编辑系统已成为一种发现数百种基因功能的强大研究工具,而且当前正在作为一种治疗各种疾病的治疗性工具加以探索。然而,在临床应用具有可行性之前,仍然存在一些技术障碍。CRISPR/Cas9是一种大分子复合物,含有一种能够切割靶基因组序列双链的核酸酶(Cas9),以及一种对基因组进行扫描来协助这种核酸酶找到待编辑的特定序列的单向导RNA(sgRNA)。鉴于它是一种大的分子复合物,很难将CRISPR/Cas9直接递送到细胞核中,只有在细胞核中,它才能发挥它的作用。其他人已将这些基因编辑分子包装到病毒、聚合物和不同类型的纳米颗粒中以让它们进入细胞核中,但是较低的转移效率限制了它们在临床应用中的使用和效力。 这项研究中描述的脂质纳米颗粒包埋编码Cas9的信使RNA(mRNA)。一旦这些包含sgRNA的纳米颗粒的内含物释放到细胞中,细胞中的蛋白制造工厂接管这种mRNA模板,并利用这种模板表达Cas9蛋白,从而实现这种基因编辑工具的作用。这些纳米颗粒的一种独特特征在于它们是由脂肪链中含有二硫键的合成脂质制成。当这些纳米颗粒进入细胞中时,细胞中的环境破坏了二硫键而将它们拆解开,从而导致它们中的内含物快速高效地释放到细胞中。 论文共同通讯作者、塔夫茨大学生物医学工程副教授Qiaobing Xu说道,“我们才刚开始观察到CRISPR疗法在人体临床试验中的使用。这些疾病包括镰状细胞病、杜氏肌营养不良症、亨廷顿病,甚至许多癌症。我们希望这一进展将使我们朝着让CRISPR成为一种有效和实用的治疗方法的方向上又迈出了一步。” 这些研究人员将这种新方法应用于小鼠中,以便减少编码PCSK9的基因的存在,其中PCSK9的缺乏与较低的LDL胆固醇和下降的心血管疾病风险存在关联性。论文共同通讯作者、中国科学院北京分子科学国家实验室的王明(Ming Wang)教授说道,“这些脂质纳米颗粒是我们见过的最有效的CRISPR/Cas9载体之一。我们实际上能够在小鼠中以80%的效率抑制PCSK9表达,这表明它有前景用于治疗应用上。”
  • 《基于 CRISPR 的基因组编辑的给药系统》

    • 来源专题:生物医药
    • 编译者:杜慧
    • 发布时间:2023-11-06
    • 理论上,基于 CRISPR 的药物可以操纵任何基因靶点。但在实践中,这些药物必须在不引起不必要的免疫反应的情况下进入所需细胞,因此通常需要一种给药系统。本文回顾了基于 CRISPR 的基因组编辑药物递送系统,重点是腺病毒和脂质纳米粒子。在介绍了如何设计这些系统以及随后在临床前动物模型中的表征之后,研究人员重点介绍了近期临床试验的数据。此外,研究人员还讨论了由聚合物、蛋白质(包括类病毒颗粒)和未来可能递送 CRISPR 系统的其他载体介导的临床前靶向。