《研究揭示植物损伤修复的秘密》

  • 来源专题:生物育种
  • 编译者: 季雪婧
  • 发布时间:2024-10-22
  •     植物在生长过程中会不断遇到各类伤害,但植物也拥有强大的“疗伤”能力,能够迅速修复伤口,减少生理危害,也避免病原菌从伤口处的入侵。比如,松树可以分泌松脂,愈合伤口。土豆等果实表面损伤后可形成木栓化结构,类似动物伤口结痂,保护受伤器官。但更常见的植物受伤方式是遇到昆虫或者草食动物取食,造成叶片损伤。植物伤口的愈合机制尚未完全清楚。近日,安徽农业大学教授李梦团队与合作者揭示了植物伤口愈合中的关键通路。相关研究成果在线发表于国际顶尖植物学期刊《分子植物》。

        植物伤口究竟是如何快速自愈?茉莉酸与脱落酸是两种不同的植物激素,调控多种植物发育和生理学过程。“研究发现,植物伤口首先快速激活茉莉酸信号,可在伤口处诱导木质素累积,这不但加固了受伤组织的细胞壁,也能迅速封堵伤口。”李梦向《中国科学报》介绍。然而,伤口位置完全恢复和“结痂”,则需要好多天时间。而快速产生的茉莉酸信号不能持续,转而被另一种植物激素——脱落酸取代。植物伤口再通过脱落酸信号激活一个名为RAP2.6的关键蛋白,从而接力完成伤口处木质素持续合成和累积,确保植物伤口持续修复直至“结痂”。李梦表示,“这项研究的发现不但揭示了植物损伤修复的秘密,也为帮助植物抵御各类逆境提供了重要的策略。”相关论文信息:https://www.cell.com/molecular-plant/abstract/S1674-2052(24)00292-2

  • 原文来源:http://news.sciencenet.cn/htmlnews/2024/10/531284.shtm
相关报告
  • 《青岛能源所等揭示植物DNA损伤调控新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-07
    •   DNA是生物体遗传信息的载体,是正常生长、发育和繁衍所需的遗传模板,对于维持DNA的完整性和稳定性至关重要。紫外线、辐射和环境污染等引起的DNA损伤影响人和动物的衰老,或导致疾病乃至癌症。对植物而言,外界环境因子,如土壤盐碱、重金属、电离辐射、紫外线、洪涝等胁迫,同样会导致DNA损伤,影响植物生长发育甚至对作物生产造成危害。然而,DNA损伤响应及修复的机制在动物和植物中不完全相同,且在植物中的研究较为滞后。调控植物DNA损伤及其修复的机制的研究,对于增强作物抗性、提高生物产量具有重要的生物学意义。近日,中国科学院青岛生物能源与过程研究所研究员李胜军带领的能源植物改良与利用研究组,揭示了MAC5A和26S蛋白酶体协同调控植物DNA损伤响应(DDR)进而影响植物生长发育及适应高硼胁迫的新机制。相关研究成果发表在《植物生理》(Plant Physiology)上。   MOS4-associated complex(MAC)复合体参与植物的生长发育、胁迫响应、pre-mRNA可变剪切和miRNA生物合成等生物学过程。MAC5是MAC复合体的一个附属亚基,其功能完全丧失后导致严重的发育缺陷和胚胎致死。此前,研究团队提出,MAC5通过调控pri-miRNA的稳定性影响miRNA的积累(Li et al., PNAS 2020),但MAC5在植物体内的其他生物学功能尚不完全清楚。         研究发现,MAC5A缺失突变体mac5a对甲基磺酸甲酯(MMS,一种DNA损伤诱导剂)的处理更加敏感,表现出主根生长抑制、真叶叶原基发育延缓等表型。RNA-seq分析发现,MAC5A缺失导致DDR相关基因的表达及pre-mRNA的可变剪切发生变化。进一步,研究通过IP-MS质谱分析鉴定到多个26S蛋白酶体亚基与MAC5A互作;通过生化和遗传分析进一步验证了MAC5A与26S蛋白酶体关键亚基RPN1A和RPT2A之间的互作关系。MAC5A调控26S蛋白酶体的活性,同时26S蛋白酶体也影响MAC5A蛋白的降解。此外,土壤中高浓度的硼影响作物的产量和品质,其中主要原因之一是高硼胁迫导致植物DNA损伤。研究表明,MAC复合体的多个核心亚基和26S蛋白酶体均参与高硼诱导的DNA损伤响应过程。该研究揭示了MAC复合体和26S蛋白酶体协同调控植物DDR过程的分子机制。   研究工作得到国家自然科学基金面上项目、山东能源研究院创新基金、山东省、中国科学院、中国博士后科学基金等的支持。美国内布拉斯加大学林肯分校、河南大学、西南大学的科研人员参与研究。   植物的生长发育与环境适应能力受到RNA的转录及转录后调控,故揭示调控植物生长、抗逆的分子基础,有助于作物尤其是能源作物的遗传改良。截至目前,该团队在RNA转录后加工领域取得了系列进展,揭示了MAC复合体附属亚基MAC5(Li et al., PNAS 2020)、MAC复合体核心亚基MAC3(Li et al., Plant Cell 2018)、DEAD-box RNA螺旋酶SMA1(Li et al., Nucleic Acids Research 2018)调控植物生长发育和miRNA合成代谢的生物学机制。
  • 《生物物理所揭示植物的光适应与捕光调节机制》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-06-22
    • 6月8日,《科学》(Science)期刊发表了中国科学院生物物理研究所常文瑞/李梅研究组、章新政研究组的合作研究成果,题为Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II。该项工作首次报道了玉米光系统I-捕光复合物I-捕光复合物II(PSI-LHCI-LHCII)超级复合物的高分辨率冷冻电镜结构,揭示了植物适应自然界多变光照条件,对两个光系统的捕光进行调节,从而平衡能量分配的分子基础。   光合作用为世界上几乎所有的生命体提供赖以生存的物质和能量,放氧光合作用还维持着地球的大气环境。放氧光合生物中的光系统I(PSI)和光系统II(PSII)吸收光能,共同完成光驱动的电子传递,其能量传递和转化效率高达90%以上。由于植物所处的自然环境是不断变化的,植物进化出非常精巧的调节机制,从而最大限度地优化光合作用效率并避免光损伤。对光合作用调节机制的研究不仅具有重要的理论意义,还有着广泛的应用价值,能够为农业上作物的增产抗逆等研究提供结构基础和思路。   状态转换是植物和绿藻中一种重要的光合作用调节机制,由于植物的PSI和PSII的捕光系统色素组成不同,导致对不同能量光的吸收能力不同,从而在自然环境下,受光照条件变化的影响,能量在两个光系统间的分配不均衡。状态转换是植物适应光环境变化、平衡激发能在两个光系统间分配的一种快速响应机制。这个过程是通过PSII上主要捕光天线LHCII的可逆磷酸化,并进而在PSII和PSI间迁移来实现的。当PSII被过度激发时,一部分LHCII会被磷酸化,从PSII上解离下来并结合到PSI上,形成PSI-LHCI-LHCII超级复合物。这部分LHCII作为PSI的外周天线,增加了传递到PSI 反应中心的能量,从而实现了激发能在PSII和PSI之间的平衡分配。解析高分辨率PSI-LHCI-LHCII复合体的结构能够从分子水平上揭示复合物中各个蛋白亚基的排列、PSI和LHCII的相互作用方式以及可能的能量传递途径,进而揭示植物状态转换的分子机理。   生物物理所的联合研究团队通过密切合作,协同攻关,以最高的效率取得了突破性进展,完成了PSI-LHCI-LHCII超级复合体3.3埃分辨率冷冻电镜结构解析。该复合体是一个约700kDa的膜蛋白-色素复合体,结构精确指认了其中的21个蛋白亚基,定位了202个叶绿素分子,47个类胡萝卜素分子以及众多的其它辅因子(如图)。该工作首次解析了LHCII的N末端磷酸化位点,揭示了LHCII和PSI的相互作用方式,构建了PSI中的全部亚基,包括以往PSI晶体结构中缺失的两个亚基PsaO和PsaN,并发现这两个亚基分别介导了LHCI和LHCII向PSI核心的能量传递。该复合体结构弥补了过去发表的PSI晶体结构中缺失的结构信息及潜在能量传递途径,并为深入研究植物状态转换的分子机理提供了重要基础。该项工作所提供的数据有望启发并促进人工光合作用体系的设计优化等应用研究。   生物物理所研究员李梅和章新政为论文的共同通讯作者,副研究员潘晓伟、马军和苏小东为该项工作的共同第一作者,中国科学院院士、生物物理所研究员常文瑞以及研究员柳振峰参与了该项研究工作,这也是该团队继过去两年在植物光系统II超级复合物结构研究工作(Nature 2016;Science 2017)发表之后的又一重要突破。该研究工作得到了科技部重点研发计划、中国科学院B类先导专项、中国科学院前沿科学重点研究项目、自然科学基金和国家“青年相关人才计划”的共同资助。数据收集和样品分析等工作得到了生物物理所“生物成像中心”、生物物理所蛋白质科学研究平台等有关工作人员的大力支持和帮助。