《研制新一代高效太阳能热吸收剂》

  • 来源专题:集成电路
  • 编译者: Lightfeng
  • 发布时间:2016-06-20
  • 来自布里斯托尔和埃克塞特的大学的研究人员们,正在开发新一代低成本、高效率的太阳能电池。这种结构是世界上第一批使用三层碳层的metasurface吸收剂中的一例。

    这种电池将被用于太阳能热能应用,并有可能达到比简单的黑色表面更高的温度,因为它可以最大限度地减少热辐射的排放量。

    metasurface已经发展成为联合项目的一部分,这个项目是由来自布里斯托尔电气与电子工程系和物理与化学学院的Neil Fox博士领导。它的目的是开发基于金刚石太阳能热装置,它利用太阳光获得足够热的表面,使它们直接发射电子到真空中。如果这些电子被收集在一个冷却的阳极,电能预测可以产生比使用传统的硅太阳能电池要高得多的效率。

相关报告
  • 《Discovery为新一代太阳能电池铺平了道路》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-07-29
    • 由KU Leuven首次领导的一项研究首次解释了一种有前景的钙钛矿 - 人造晶体可将阳光转化为电能 - 如何得以稳定。结果,晶体变黑,使它们能够吸收太阳光。这对于能够在易于制造且高效的新太阳能电池板中使用它们是必要的。该研究发表在“科学”杂志上。 钙钛矿是具有许多应用的半导体材料。他们在收获太阳能方面表现出特别的希望目前,大多数太阳能电池由硅晶体制成,硅晶体是一种相对简单有效的材料,可用于此目的。然而,基于钙钛矿的器件提供比硅更高的转换效率。唯一的问题是:一些最有希望的钙钛矿,即三碘化铅(CsPbI3),在室温下非常不稳定。在这些条件下,它们具有黄色,因为晶体中的原子不形成钙钛矿结构。为了使晶体有效地吸收阳光并将其转化为电能,它们应该处于黑色的钙钛矿状态 - 并保持这种状态。 “硅形成一种非常坚固的刚性晶体。如果按压它,它就不会改变它的形状。另一方面,钙钛矿更柔软,更具延展性,”KU鲁汶膜中心的Julian Steele博士解释说。可持续解决方案的分离,吸附,催化和光谱学(cMACS)。 “我们可以在各种实验室条件下稳定它们,但在室温下,黑色钙钛矿原子确实需要重新洗牌,改变结构,最终将晶体变成黄色。” 斯蒂尔与国际科学家团队一起发现,通过将钙钛矿太阳能电池的薄膜粘合到一块玻璃上,细胞可以获得并保持其所需的黑色状态。将薄膜加热至330摄氏度的温度,使钙钛矿膨胀并粘附在玻璃上。加热后,将薄膜快速冷却至室温。这个过程固定晶体中的原子,限制它们的运动,使它们保持所需的黑色形状。 “有三个支柱决定了太阳能电池的质量:价格,稳定性和性能。钙钛矿在性能和价格方面得分很高,但它们的稳定性仍然是一个主要问题,”斯蒂尔说。几年来,科学家们已经观察到钙钛矿可以在加热后保持黑度,但目前还不清楚为什么。 “在我们的研究中,我们选择了CsPbI3,因为它的性能非常高,”Steel解释道。 “此外,它是最不稳定的钙钛矿类型之一,这意味着它对我们描述的方法很敏感,应该转化为其他不稳定的钙钛矿。” 该研究中使用的大部分数据都是在欧洲同步辐射装置收集的。为了理解分子尺度上的实验观察,根特大学分子模拟中心(CMM)的同事通过理论模拟钙钛矿的黑色和黄色相来支持这一发现。计算结果对于合理化将黑相固定在玻璃基板上作为薄膜时的稳定性是必要的。 尽管存在假设,但如何完全结合仍然是个谜。 “通常情况下,我们会选择具有原子分辨率的显微镜并直接看一下。然而,这对于钙钛矿来说是不可能的,因为它们很难用这种高分辨率成像仪器观察,因为它们非常柔软并且容易在下面分离。普通探头能量相对较高。“ ——文章发布于2019年7月26日
  • 《非富勒烯有机太阳能电池或成为新一代太阳能电池!》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-09-28
    • 导读 近日,韩国蔚山国立科技大学的科研团队成功地提出了一种新方法,可以解决与有机太阳能电池中光学活性层厚度相关的问题。这种新方法将促进工艺设计,并进一步推进有机太阳能电池的商业化。 背景 太阳能具有清洁、环保、可再生、易获取、低成本等诸多优势,是一种极具开发与利用价值的新能源,并已得到极为广泛的开发与利用。然而,太阳能电池是一种典型的太阳能利用方式,它可以将太阳能转化为电能并存储起来。 如今,占主导地位的太阳能电池仍是以无机半导体为主要材料制成的,单晶硅、多晶硅和非晶硅系列的硅基太阳能电池的商业应用最为广泛。但是,传统的硅基无机太阳能电池具有制造成本昂贵、制造能耗大、污染高、工艺复杂等缺点。此外,传统的无机太阳能电池是笨重、刚性、易碎的,不便于运输以及灵活的安装使用。 然而,新兴的有机太阳能电池(OSCs)的制造成本更低,制造工艺更简单,还具有轻量、柔性、超薄、透明等优势,便于运输以及灵活的部署。 尽管有机太阳能电池的优点很多,然而其“光电转化效率”一直无法与无机太阳能电池媲美。然而可喜的是,近年来,有机太阳能电池光电转化效率已增至10%以上,达到了可商业化应用的水平。但是,光学活性层厚度增加会导致光电转化效率降低,因此需要更加复杂的制造工艺。 创新 近日,韩国蔚山国立科技大学(UNIST)能源与化学工程学院的教授 Changduk Yang 及其领导的科研团队成功地提出了一种新方法,可以解决与有机太阳能电池中光学活性层厚度相关的问题。 电池中实现了12.01%的光电转化效率。更进一步说,即使最大测量厚度在300纳米的范围内,这种新的光学活性层仍保持了其初始的光电转化效率。这项研究将促进工艺设计,并进一步推进有机太阳能电池的商业化。 Yang 教授表示:“现有的有机太阳能电池中的光学活性层非常薄(100纳米),因此根本没有可能通过大面积印刷工艺处理。即使最大测量厚度在300纳米的范围内,这种新的光学活性层仍保持了其初始的效率。” 技术 太阳能电池使用光学活性层将太阳能转化为电能。当这些活性层受到太阳光照射时,受激的电子从原子中逃逸,并在半导体中生成自由电子与空穴,而电子与空穴的运动可以提供电能。电子的转移被称为“通道一(Channel I)”,而空穴的运动被称为“通道二(Channel II)” UNIST 化学工程与能源学院硕博连读研究生 Sang Myeon Lee 表示:“由于活性薄层的光线吸收率低下,富勒烯基太阳能电池只利用了Channel I。然而,新型太阳能电池同时利用了Channel I 与Channel II,因此实现了高达12.01%的效率。” 价值 在这项研究中,Yang 教授已经解决了与有机太阳能电池中的光学活性层厚度相关的问题,从而离实现大面积印刷工艺又更近了一步。 Yang 教授表示:“这项研究突出了综合考虑并优化‘电荷分离/输运’与‘相区尺寸’两个因素的重要性,从而实现了高性能的非富勒烯聚合物太阳能电池(NF-PSCs)。未来,我们将对高效有机太阳能电池的生产与商业化作出贡献。” Yang 教授还表示:“我们的研究展示了一种合成非富勒烯光学活性材料的新途径。我们希望为高效有机太阳能电池的生产与商业化作出进一步的贡献。”