《蛋白质图谱解密共生固氮》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2016-10-18
  • Of the many elusive grails of agricultural biotechnology, the ability to confer nitrogen fixation into non-leguminous plants such as cereals ranks near the very top.

    Doing so is a huge challenge because legumes partner with bacteria called rhizobia in a symbiotic waltz that enables plants to draw sustenance from the air and transcend the need for environmentally harmful chemical fertilizers. The natural process is central to the practice of crop rotation, widely used to prevent exhaustion of soil from crops such as corn, which depend on the application of synthetic fertilizers.

    The fact that two distinct and very distantly related organisms -- a plant and a bacterium -- can partner to perform the feat of drawing life-sustaining nitrogen from the atmosphere is just one of the challenges plant engineers face as they seek to confer this quality on other important crops.

    The answer to the challenge, however, may be one big step closer with the publication of a massive atlas of plant and bacterial proteins at play as the symbiotic process plays out between plant and microbe.

    Writing in the current Nature Biotechnology, a group from the University of Wisconsin-Madison details more than 23,000 plant and bacterial proteins and the molecular controls by which they execute the beneficial relationship. The atlas, possibly the most exhaustive proteomic inventory of any kind to date, shows in minute detail the interplay of proteins as rhizobia colonize root nodules on the model legume Medicago truncatula.

    "We can see deeper into the proteome than ever before," explains Joshua Coon, a UW-Madison professor of biomolecular chemistry and chemistry, and a corresponding author of the new atlas. "We're able to use technology to provide an unprecedented view of these proteins."

    That new picture, he says, takes our understanding of the mechanics of nitrogen fixation to an unprecedented level of detail. Because proteins are regulated by genes, the new atlas could ultimately help inform a strategy for engineering the nitrogen-fixing ability of legumes into other plants.

    "Linking the protein information with the genetic networks is important," notes Jean-Michel Ane, a UW-Madison professor of bacteriology, also a corresponding author of the new report. "It allows us to see patterns by correlating gene expression with proteins."

    The new atlas was compiled using potent new mass spectroscopy technology, says Coon, a leading authority on the technique that permits scientists to parse a sample into its many constituent components and measure them in exquisite detail. "The complexity of measuring the number of proteins in a sample is mind-boggling," Coon says. "Knowing the genes isn't enough. There are millions and billions of ways proteins can be modified to give them a new mission. All of this information at the protein level is novel, and we can look globally at all these molecules and how they are modified and make some predictions about function."

    The new study, supported mostly by grants from the National Science Foundation, was led by Harald Marx, a postdoctoral fellow in the UW-Madison Genome Center; and Catherine Minogue, a former graduate student in the UW-Madison Department of Chemistry. Michael Sussman, a UW-Madison professor of biochemistry, and Sushmita Roy, a professor of biostatistics and medical informatics, also contributed to the study.

    The Wisconsin researchers stress that while the new protein atlas will be an important cipher for decoding the molecular details of nitrogen fixation symbiosis, the goal of conferring the trait on plants other than legumes remains in the distant future.

    The Wisconsin work was conducted using the model legume Medicago truncatula and its rhizobial symbiont Sinorhizobium meliloti, a system developed for genetics research about 20 years ago.

    "It is a very close relative to alfalfa," says Ane, referencing the legume widely used in agriculture as part of crop rotation systems.

  • 原文来源:;https://www.sciencedaily.com/releases/2016/10/161017124020.htm
相关报告
  • 《Nature | 跨物种蛋白质组学图谱揭示了人类突触发育的可塑性》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-09-18
    • 2023年9月13日,加州大学旧金山分校LiWang及Arnold R. Kriegstein共同通讯在Nature 在线发表题为“A cross-species proteomic map reveals neoteny of human synapse development”的研究论文,该研究生成了人类、猕猴和小鼠新皮层突触发育的跨物种蛋白质组学图。 通过跟踪1000多个突触后密度(PSD)蛋白从妊娠中期到青年期的变化,该研究发现人类PSD成熟分为三个主要阶段,这些阶段由不同的途径主导。跨物种比较表明,人类PSD的成熟速度比其他物种慢两到三倍,并且在围产期含有更高水平的Rho鸟嘌呤核苷酸交换因子(RhoGEF)。人类神经元中RhoGEF信号的增强延迟了树突棘的形态成熟和突触的功能成熟,可能有助于人类大脑发育的新生特征。此外,PSD蛋白可以分为四个模块,发挥阶段和细胞类型特异性功能,可能解释它们与认知功能和疾病的差异关联。总之,突触发育蛋白质组学图谱为研究突触成熟的分子基础和进化变化提供了蓝图。 本文内容转载自“ iNature”微信公众号。原文链接: https://mp.weixin.qq.com/s/j1cPeGy0ebJWZng-RhSWXg
  • 《探索人类尼帕病毒蛋白质 - 蛋白质相互作用》

    • 来源专题:新发突发疾病防治
    • 编译者:张玢
    • 发布时间:2018-05-30
    • 尼帕病毒是副粘病毒科家族的新兴高致病性人畜共患病毒。人类传播是通过与受感染的动物密切接触,食用被污染的食物,或偶尔通过其他受感染的个体进行的。目前,缺乏对尼帕病毒的治疗或预防性治疗。为了开发这些药物,现在必须提高对宿主病毒相互作用的理解,从而支持生产性感染。研究人员确定了101种人类尼帕病毒蛋白质 - 蛋白质相互作用(PPIs),其中大多数(88)都是新型的。该数据集提供了病毒蛋白质操纵的宿主复合物的全面视图。宿主目标包括PRP19复合体和microRNA(miRNA)加工机械。此外,探讨了与PRP19复合物相互作用的生物学后果,发现尼帕病毒W蛋白能够改变p53的控制和基因表达。预计这些数据将有助于指导新型干预策略的发展,以应对这种新出现的病毒威胁。 尼帕病毒是一种最近发现的病毒,感染广泛的哺乳动物,包括人类。自发现以来,每年都有爆发,其中一些病例的死亡率已达到确诊病例的100%。然而,尼帕病毒的研究在很大程度上被忽视,目前缺乏治疗这种感染。为了开发这些药物,现在必须提高对宿主病毒相互作用的理解,从而支持生产性感染。在目前的工作中使用亲和纯化方法与质谱联用鉴定了101种人类尼帕病毒蛋白质 - 蛋白质相互作用。另外,探索了这些相互作用中的一些的细胞结果。在全球范围内,该数据集提供了主机对尼帕病毒生命周期贡献的全面和详细的视图。此外,提供了大量可用于治疗这种感染的假定药物靶点。