《“二氧化碳变蛋白”向产业化迈出关键一步》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-07-04
  • 科技日报北京7月2日电 记者2日获悉,吉态来博(北京)生物科技发展有限公司自主研发的解脂耶氏酵母蛋白,获得农业农村部颁发的新产品证书,正式批准可作为新饲料原料。这是我国批准的首张具有自主知识产权、以二氧化碳为主要碳源生产的饲料原料新产品证书,标志着该技术从实验室向产业化应用迈出关键一步。 据介绍,解脂耶氏酵母蛋白采用生物发酵技术生产。该技术突破性地使用来源于煤化工、天然气化工和钢铁行业等领域的二氧化碳,通过生物发酵方法,将二氧化碳高效转化为高营养价值的酵母蛋白,为解决我国饲料蛋白资源短缺、保障粮食安全及推动绿色低碳发展开辟了全新路径。 与传统农业种植和渔业生产方式相比,该技术可将饲料蛋白时空生产效率提升数千倍。例如,一个占地150亩的酵母蛋白工厂可以年产10万吨优质酵母蛋白,相当于约60万亩土地所产的大豆蛋白。从营养价值看,酵母蛋白中的必需氨基酸含量高且分布均匀,富含微量元素和多糖类物质,并且适口性良好。 我国饲料蛋白资源短缺问题十分严峻。数据显示,我国在2024年饲料蛋白总消费量约7000万吨,进口依存度超过80%,成为影响国家粮食安全的关键短板。国家发展改革委在《“十四五”生物经济发展规划》中明确提出,发展合成生物学技术,探索研发“人造蛋白”等新型食品,实现食品工业迭代升级,降低传统养殖业带来的环境资源压力。 这一创新技术正是对这一国家战略的积极响应。解脂耶氏酵母蛋白被批准为单一饲料原料后,有助于创造新的、更可持续的、资源效率更高的蛋白质饲料供应链,从根本上减轻对土地密集型作物(如大豆)和海洋资源(如鱼粉)的依赖,将大幅拓宽我国非粮型饲料蛋白来源,为构建多元化饲料供应体系提供重要支撑。
  • 原文来源:https://www.china5e.com/news/news-1190843-1.html
相关报告
  • 《新颖的两步二氧化碳转化技术》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-09-27
    • 特拉华大学催化科学与技术中心(CCST)的一组研究人员发现了一种新型的两步法来提高二氧化碳(CO2)电解效率,这是一种由电流驱动的化学反应,可以帮助生产有价值的化学品和燃料。 研究小组的研究结果于8月20日星期一发表在《自然催化》杂志上。 研究小组由化学和生物分子工程副教授冯姣和研究生马修·朱尼和卫斯理·吕克组成,他们通过建造一种特殊的三室装置获得了研究结果,这种装置被称为电解槽,利用电力将二氧化碳转化为更小的分子。 与化石燃料相比,电力是一种更经济、更环保的方法,可以驱动化学过程生产商业化学品和燃料。其中包括乙烯(用于生产塑料)和乙醇(一种有价值的燃料添加剂)。 “这种新型电解技术提供了一种新的途径,以令人难以置信的反应速率获得更高的选择性,这是迈向商业应用的重要一步,”焦说,他同时也是CCST的副总监。 而直接的CO2电解是降低二氧化碳的标准方法,焦的团队将电解过程分为两个步骤,将CO2还原为一氧化碳(CO),然后将CO进一步还原为多碳(C2+)产品。焦健说,这种分两部分的方法比标准方法有很多优点。 焦博士说:“通过将这一过程分为两个步骤,我们获得了比直接电解过程更高的多碳产品选择性。”“序贯反应策略可以为设计更高效的二氧化碳利用过程开辟新途径。” 焦健和他的同事、化学和生物分子工程助理教授徐秉俊也在推动焦健的研究。在天津大学的研究人员的合作下,焦和徐正在设计一个系统,通过使用碳中性的太阳能发电来减少温室气体的排放。 焦说:“我们希望这项工作能让人们更多地关注这项有前途的技术,以便进一步研发。”“仍有许多技术挑战有待解决,但我们正在努力解决它们!” ——文章发布于2018年9月25日
  • 《二氧化碳一步100%选择性转化为乙醇》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2023-05-23
    • 江南大学近日消息,该校刘小浩教授团队首次实现了二氧化碳一步100%选择性转化为乙醇,取得重磅突破。 附江南大学官微文章: 5月16日,《科技日报》以“我科研团队实现二氧化碳一步合成乙醇”为题报道了江南大学刘小浩教授团队首次实现了二氧化碳一步100%选择性转化为乙醇。 文章称,该团队提出了一种全新的催化剂设计策略,通过结构封装法,构筑了双钯位点-纳米“蓄水”膜反应器,实现了二氧化碳在温和条件下连续流一步无副反应高效稳定制乙醇。相关研究成果5月10日发表于《美国化学会·催化》。 乙醇,俗称“酒精”,既是重要的基础化学品,又与人们的日常生活息息相关,可用于制造饮料、消毒剂、车用燃料。同时,乙醇还可以转化为乙烯和下游高价值化工产品。在乙醇制备方面,工业上一般采用粮食发酵法和煤基乙醇技术。粮食发酵法制备乙醇不可避免出现“与人争粮”的局面,煤基乙醇工艺路线复杂、且制造乙醇过程中产生大量的二氧化碳。 “利用二氧化碳作为碳源一步直接合成更高价值的乙醇,不仅可以避免消耗粮食和煤炭资源,还能降低二氧化碳排放。这一技术难题的解决将为二氧化碳大规模高值利用提供巨大机遇。”刘小浩表示。 近年来,科学家已经开发了多种途径将二氧化碳转化为乙醇,比如光催化、电催化、以及间歇釜热催化。相较于上述技术途径,在连续流固定床反应器中,由于便捷的物质流和能量流管理,更容易实现工业应用。刘小浩进一步解释,但目前的技术无法实现可控精准增碳定向生成乙醇,易产生大量低价值的副产物。 此次,研究人员创新性地采用“结构封装法”精准构筑“双钯催化位点”-纳米“蓄水”膜反应器,合成的催化剂结构类似于一个胶囊,胶囊内部封装了二氧化铈载体分散的双钯催化剂。胶囊的壳层具有高选择性,疏水修饰后,保证内部生成的水富集而产物乙醇可以溢出。其中的水环境可以稳定双钯活性位点,该催化剂能够实现温和条件下(3 MPa,240 ℃)二氧化碳近100%选择性高效稳定转化为乙醇。 刘小浩介绍,以往研究中采用的各种热催化转化催化剂,特别是在连续流反应器中,无法实现有效的增碳合成单一高碳产物,主要是无法实现中间物种的定向转化和碳链增长的精确可控。“本次研究基于我们团队在前期对钯-二氧化铈体系在二氧化碳加氢反应中的研究(包括氧空位、活性中心构型、反应装置类型等),构筑的“双钯活性位点”具有独特的几何和电子结构,其邻近的钯位点和富电子特性有利于促进中间物种碳-氧键解离和随后的碳-碳偶联,从而实现二氧化碳加氢定向生成单一高价值产物乙醇。” “催化剂合成工艺和催化反应路线简单,有大规模工业化应用前景,我们未来将继续推进催化剂在实际应用过程的工业化放大以及与碳捕集和绿氢生产耦合实现二氧化碳资源的高价值利用。”刘小浩说。