《中国科学院长春光学精密机械与物理研究所等在高维光场探测领域取得重要进展》

  • 编译者: 李晓萌
  • 发布时间:2024-06-12
  • 中国科学院长春光学精密机械与物理研究所李炜团队在高维光场探测领域取得重要进展。5月15日,相关研究成果以Dispersion-assisted?High-dimensional?Photodetector为题,发表在《自然》(Nature)上。

    光场包含强度、偏振、频率、相位等多个维度的信息。其中,光谱探测与偏振探测包含物体的物质组成和表面形貌等信息,在光通信、遥感、工业检测、医疗诊断、化学分析、环境保护等领域具有应用价值。然而,传统的光电探测器仅限于测量光强度,现有的偏振和光谱探测器通常在时间或空间上集成多个偏振或波长敏感元件来增强探测能力。此外,目前的偏振和光谱探测器通常仅能够测量固定波长下的强度和偏振或均匀偏振下的强度和波长信息。然而,在自然界的很多场景中,光场可能在宽光谱范围内携带任意的偏振和强度变化,而现有探测器难以实现对这种高维度信息的探测。

    针对这一问题,李炜团队与合作者在国际上首次利用单个器件通过单次测量,对宽带光谱范围内具有任意变化的偏振和强度的高维光场进行了全面表征,实现了高维度光场信息探测。

    该研究提出了利用光学界面的空间色散和频率色散特性以在波矢空间对偏振和光谱响应进行调控的创新思想,能够将高维光场的信息全部映射到单次成像结果之中。研究配合深度学习方法来解码偏振和光谱信息,实现了高维度光信息的探测,具有与现有先进单一功能的小型偏振仪或光谱仪相当的探测精度。此外,研究通过简单地将薄膜与微透镜阵列和成像传感器阵列进行“三明治”式的组合,能够实现无需对准、单次测量的超集成高维光场成像仪。这一成果为超紧凑、高维度的信息探测和成像探测开辟了新途径。

    研究发现,这一方法具有超宽带探测的潜力;利用这种波矢空间的响应能力,该方法可以进一步与图像处理、测距等功能相集成,以实现更高维度的光场探测。同时,研究显示,利用光子晶体、超表面、二维材料等代替薄膜结构可以进一步提高探测分辨率和集成能力。此外,将其中的物理模型与深度学习进行有机结合,以增强解算能力并降低所需先验数据量,这是未来的研究方向。

    该工作由长春光机所和新加坡国立大学合作完成。长春光机所为第一完成单位。

相关报告
  • 《中国科学院近代物理研究所科研人员对空间引力波探测信号识别研究获进展》

    • 编译者:张宇
    • 发布时间:2025-01-03
    • 中国科学院上海天文台和中国科学院大学等的科研人员在空间引力波探测信号识别领域取得进展。该团队开发出基于深度学习的创新方法,可高效探测和分析空间引力波探测器的极端质量比旋近(EMRIs)信号,将为未来空间引力波探测与数据分析提供参考。相关研究成果在线发表在《中国科学:物理、力学和天文学》上。 自2015年首次探测到引力波以来,地面引力波探测器已探测到超过100例引力波事件。这些地面探测器的探测频段在几十到几百赫兹之间。为探索低频引力波源,科学界正积极筹备空间引力波探测计划。 空间引力波探测的重要目标之一是极端质量比旋近系统。这类系统由一颗恒星级黑洞围绕中心的超大质量黑洞旋转而成。研究EMRIs系统,能够帮助科学家精确检验广义相对论,绘制超大质量黑洞周围的时空图,验证“无毛定理”,有望揭示超大质量黑洞的质量分布及其与宿主星系的共同演化历史。 而EMRI信号的探测和分析面临挑战。这类信号可持续数年之久,且特征复杂、强度微弱,需要大量的计算资源来生成高精度波形模板。传统的匹配滤波和贝叶斯参数估计方法需要海量的EMRI波形模板来覆盖多维参数空间且计算成本高昂。更棘手的是,EMRIs信号的精确建模困难,而传统方法依赖于模板的准确性。 针对上述挑战,该团队创新性地提出了基于深度学习的完整解决方案。在时频域进行信号分析时,团队设计的二层卷积神经网络展现出优异的探测性能。对信噪比50至100范围内的信号,在1%的误报率下可实现96.9%的真实探测率。为验证这一方法的普适性,科研人员进行模板依赖性测试。结果表明,即使注入与训练数据不同模型生成的信号,该方法仍可以保持稳定的探测性能。这表明,该方法对理论模型的依赖程度较低,并提升了实际探测的应用价值。 进一步,在探测到信号后,该团队采用UNet网络在噪声中提取EMRI信号,并通过神经网络实现关键参数的精确估计。超大质量黑洞的质量估计准确率达99%,自旋参数估计准确率达92%。同时,神经网络可以准确预测轨道初始偏心率等参数。这为未来的引力波数据分析提供了新思路。 论文链接 (DOI:10.1007/s11433-024-2500-x)
  • 《长春光机所在量子精密测量用窄线宽半导体激光器方面取得新进展》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-01-24
    • 量子精密测量是利用光与原子相互作用的量子效应和技术,突破标准量子极限,以实现测量精度、灵敏度和稳定性全面超越经典测量手段的方法。这一颠覆性技术的关键是实现原子精细能级跃迁和量子态探测的窄线宽激光器。此外,激光器的高偏振特性也是提升激光稳频系统和量子干涉系统性能,制约测量准确度和分辨率的决定因素。因此,兼具窄线宽和线偏振的窄线宽半导体激光器在量子精密测量领域备受关注,其中,用于Cs原子里德堡态制备的852nm窄线宽激光器是典型代表。 中国科学院长春光学精密机械与物理研究所大功率半导体激光器研究团队在王立军院士、宁永强研究员的领导下,近年来开展了先进窄线宽半导体激光器及关键技术攻关。近日,该团队陈超副研究员报道了一种基于外部光反馈结构的852nm窄线宽、线偏振半导体激光器。激光器结构通过引入飞秒激光诱导的双折射Bragg光栅滤波器,并与高偏振相关性半导体增益芯片混合集成,利用偏振模式选择性反馈和注入锁定技术,实现了超过30dB偏振消光比和低至2.58kHz的高线偏振、窄线宽激光输出。该激光器可作为量子精密测量系统的潜在原子泵浦光源,并且基于前期在抗辐射、窄线宽激光器方面的研究基础,亦有希望用于空间环境中星载和箭载的冷原子量子实验系统。 这项研究成果以“Linear polarization and narrow-linewidth external-cavity semiconductor laser based on birefringent Bragg grating optical feedback”为题,发表在Optics and Laser Technology(DOI:https://doi.org/10.1016/j.optlastec.2023.110211)。 此前,研究团队针对空间激光通信和相干激光探测的需求,分别报道了抗辐射窄线宽外腔半导体激光器(成果发表在Journal of Luminescence,DOI:doi.org/10.1016/j.jlumin.2023.119812)和高偏振消光比窄线宽混合集成激光器(成果发表在Optics Express,DOI:doi.org/10.1364/OE.431341)。 上述论文的第一作者分别为博士研究生陈加齐、罗曦晨,通信作者为陈超副研究员。研究工作得到了国家自然科学基金委项目、吉林省科技发展计划资助项目和长春市科技发展计划项目的资助,取得的窄线宽半导体激光器关键技术突破已经授权国家发明专利3件。