《舒印彪:电力系统面临安全新挑战》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2023-01-18
  • “电力系统安全关系千家万户、事关国计民生,是国家安全的重要组成部分。实现‘双碳’目标,需要构建新型电力系统。新型电力系统具有新的技术特征,面临新的发展机遇和挑战。” 中国工程院院士舒印彪近期在北京大学能源研究院主办的以“新形势下能源转型思考——能源安全”为主题的北京论坛·能源分论坛暨第三届北大能源论坛上指出。

    电力与人们的衣食住行和生产生活息息相关、密不可分。作为经济社会发展的重要物质基础,电力已经成为人们须臾不可离开的资源要素。电力系统是现代社会重要的基础设施,电力系统的根本任务是保证“安全、经济、优质、清洁、高效”的电力供应。

    舒印彪指出,实现“双碳”目标,需要大规模开发新能源,构建新能源占比提高的新型电力系统。新型电力系统的“双高”特征 (高比例新能源、高比例电力电子装备) 带来新的安全挑战。

    电力系统安全关系能源安全、经济安全和国家安全

    电力系统使人类极大摆脱了时间和空间上对能源生产、利用的限制。为了使用电力更广泛、更便利,电力系统规模越来越大、结构更加复杂,世界上建成了一些大型的电力系统,比如北美联合电力系统、欧洲电力系统、印度电力系统等,我国电力系统是全球最大、技术最复杂的电力系统。

    舒印彪指出,电力系统具有三个显著的技术特征。一是光速传播。电磁功率以光速传播,局部发生的故障会瞬间扩散,波及整个系统。二是实时平衡。电力还不能大规模经济存储,电力的发、输、用必须同时完成。三是控制复杂。电力系统中设备种类繁多,涉及海量的状态变量和控制参数,是典型的复杂巨系统,控制难度非常大。

    由于电力系统稳定运行状态被破坏,全球发生过多起大面积停电事故带来巨大损失,美加“8·14”、欧洲“11·4”、印度“7·30”“7·31”大面积停电事故等。“经过多年实践,我国构筑起‘三道防线’安全稳定控制系统,经受住了长期考验。我国电力系统连续30多年没有发生大面积停电事故,保持着特大型电力系统安全稳定运行的世界纪录。”舒印彪说。

    舒印彪表示,除传统电力系统稳定破坏事故外,还有一类是非传统安全事故,呈现频发多发态势,同样需要高度重视。“包括极端天气、自然灾害、电磁暴、网络攻击等影响电力系统安全。2008年1月到2月初,我国南方遭遇有历史纪录以来最严重的长时间大范围雨雪、冰冻灾害,导致大量输电线路倒塔断线,事故波及湖南、湖北、贵州、江西等多个省份。”

    构建新型电力系统面临新的安全挑战

    舒印彪指出,电力系统安全运行主要看两个指标,一是电压稳定,二是频率稳定,而新型电力系统面临一系列新的安全挑战。

    新型电力系统正经历三方面变化:新能源占比逐步提升、从电力系统变为电力电子系统、形态功能多样化。舒印彪认为:“基于此,运行特性方面,由连续可控电源变为弱可控和强不确定性电源。传统电力系统电源以常规火电、水电为主,发电出力连续可控。新型电力系统中新能源发电受气候变化和天气条件影响大,具有随机性、波动性、间歇性的特点,发电出力弱可控和高度不确定。”

    “稳定特性方面,保持频率、电压等同步稳定的技术基础发生显著改变。频率稳定方面,常规同步发电机具有较大的转动惯量,是维持频率稳定的技术基础。风电是弱转动惯量系统,光伏没有转动惯量,导致电力系统转动惯量大幅减少,保持频率稳定的能力大幅下降,目前绝大部分‘风光’新能源还不能对电网提供有力支撑。”舒印彪说。

    同时,高比例新能源、高比例电力电子装备带来两大技术难题。

    首先,电力电量实时平衡问题,日内、中短期和长期平衡难度都将加大。新能源日内出力波动大。风光等新能源发电功率达到装机容量的概率几乎为零,达到50%以上装机容量的概率不足10%。预计2060年,新能源日最大发电功率波动将超过16亿干瓦,占全国最大负荷的40%,与当时水火核电装机容量基本相当。从周月平衡看,由于连续阴天、无风、寒潮等天气,新能源周出力具有很强的不确定性。2020年,西北风电出力低于10%装机最长持续4.9天,华东光伏出力低于20%装机最长持续8天。新能源发电存在季节性差异。风电夏季比冬季利用小时少100~200小时,风电出力与负荷需求在时间上不完全匹配。

    再者,上述变化带来一系列安全性问题。舒印彪表示:“由于新能源占比提升,电力系统表现出新的稳定特性、产生新的安全问题不容忽视。2016年9月,强台风袭击澳洲南部地区,该地区电力电子类电源出力占比达55%,输电线路相继故障,大量风机脱网。由于系统转动惯量不足,导致频率崩溃。2015年9月。四川锦屏-江苏直流发生双极闭锁故障,当时华东电网用电负荷1.4亿干瓦,锦屏直流送电490万千瓦、仅占华东负荷的3.5%。故障后,华东电网频率降至49.58Hz,跌落幅度也远超预计值,通过自动装置动作和紧急调度后,系统恢复正常频率。”

    保障新型电力系统安全需要理论和技术创新

    传统电力系统的分析理论和控制方法已不完全适用新型电力系统,理论和技术创新迫在眉睫。

    舒印彪指出,首先需要深化基础理论研究,加强多时间尺度随机规划研究、建立新型电力系统稳定性认知体系。再者,提高平衡调节能力,提升电源支撑能力,挖掘用户侧响应资源,突破多时间尺度储能技术,积极发展氢能,数字赋能新型电力系统。

    新情景需要新手段,舒印彪建议增强分析控制能力。加强仿真分析与优化控制,构筑新型电力系统主动防御体系。“通过预测、预判、预警和预控,实现电力系统安全风险的主动防御。发挥电力电子装备快速调节的特点,实现大范围多资源协同快速控制,增强故障的事中防御、事后恢复能力,提高新型电力系统的韧性。”

    舒印彪建议发挥我国独特的电力系统体制优势。坚持全国一盘棋,做好区域间、能源资源与经济发展的统筹平衡,加强“西电东送”等重大能源基础设施建设。加快构建全国统一电力市场,健全辅助服务、容量市场等机制,建立更加灵活、适应新能源随机性波动性特点的电力交易机制。完善煤电容量成本回收机制,确保煤电作为支撑新能源大规模发展的基础电源,系统调节价值得到合理回报。加强电力市场与碳市场的耦合联动。

    此外,要高度重视非传统安全防御。“增强非传统安全风险预警能力,将电力安全事件纳入突发公共事件应急保障,就极端天气、自然灾害、网络安全、公共安全等引起电力安全事件制定预案,明确安全保障措施.加强城市应急保障电源、重要电力保障通道等电力系统应急能力建设。”舒印彪说。

  • 原文来源:https://www.in-en.com/article/html/energy-2321938.shtml
相关报告
  • 《电力系统转型进行时 稳定供应或存挑战》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-04-28
    • 记者在四川、宁夏、陕西、新疆等地调研发现,在探索构建以新能源为主体的新型电力系统的过程中,多地进行了总体规划研究、示范区和试点示范项目建设等工作,但面临电力供应保障难度加大、电网安全稳定运行受到挑战、电网投资及系统成本增加等难题。业内表示,这一工作试错成本高,宜充分利用成熟技术、存量系统并深入挖掘潜力,支持新技术发展,积极稳妥、循序渐进实现转型,更要推进建设全国统一的电力市场体系促进新能源更大范围消纳。 传统电力系统正在转型 多方表示,双碳目标的实现和新型电力系统的构建是一个长期、系统性的工程,目前我国处于传统电力系统转型阶段,即新能源快速发展,高比例可再生能源接入与高比例电力电子设备应用影响处于“量变”阶段,该阶段常规电源仍是电力电量供应主体,新能源作为补充,发用电的实时平衡是主要特征。 国网宁夏电力有限公司发展策划部副主任项丽介绍,宁夏把电力外送攻坚工程、骨干网架构建工程、系统调节提升工程、现代配网建设工程、智能调控升级工程和设备精益运维工程作为构建新型电力系统的主要抓手,计划到2030年新能源装机占比超过70%,新能源逐步向电力电量供应主体转变,基本建成宁夏新型电力系统。 四川省新型电力系统研究院是全国范围内首个省级新型电力系统研究平台。研究院科研发展部主任胥威汀介绍,研究院联合省内外知名高校和科研院所,打造水光蓄多能互补联合发电示范工程样板,同时针对高比例水电系统超低频振荡风险、新能源接入稳定性、系统频率调节能力不足等问题,形成系列理论成果,有效保障四川清洁能源的安全送出与高效消纳。 在新疆,国网新疆电力有限公司重点围绕电源侧清洁化、电网侧智能化、负荷侧电气化,研究配套政策机制,推动形成源网荷储协同互动。同时,推动南疆四地州纳入国家电网公司新型电力系统示范区,试点实施“新能源+储能”发展模式,支撑南疆新能源发展;实施源网荷储协调控制工程示范,推动电网转变为“源随荷动、荷随网动”的源网荷储智能互动模式,提高电力供应保障能力;建设库车“光伏+制氢”示范项目,充分发挥电制氢作为高度可调节负荷的特点,有效提升电力系统灵活性和安全性。 电力稳定供应面临一定挑战 在传统电力系统转型阶段,业内人士表示面临几大挑战。 ——保障电力供应面临重大挑战。国网新疆经研院院长赵志强表示,在煤电有序减量化发展、新能源规模化发展的背景下,由于新能源“极热无风”“晚峰无光”“大装机、小电量”的特征显著,新能源成为影响电力供应的最大变量,负荷高峰关键时刻不顶用、扛不住。 ——电网安全稳定运行面临重大挑战。随着新能源占比逐步攀升,将替代传统火电成为能源供应主体,电力系统转动惯量持续降低,系统运行中动态无功支撑不足、频率调节和稳定不足、传统同步稳定和新形态稳定交织等安全问题日益突出,新能源设备暂态支撑特性、设备耐压能力不足,当电网发生扰动引起电压、频率波动时,易引发连锁脱网事故,使故障演变过程更加复杂,系统大面积停电风险增大。 ——增加电网投资及系统成本。新能源基地多处于电网末端,且新能源利用小时数少于常规电源,规模化开发导致新能源汇集、送出工程及其上级送出通道配套补强工程规模持续增加,电网投资需求大幅增长,并且新能源建设周期远小于外送工程建设周期,建设时序难以有效匹配。 ——对重大科技攻关和推广应用提出更高要求。新型电力系统涉及领域多、影响面广,重大技术支撑应用是关键保障。以5G、大数据、物联网等为代表的数字技术与电网技术加速融合,新技术、新业态、新模式对电力技术创新形成倒逼之势,需要积极探索与之相适应的电力产业结构、商业模式、技术体系和管理体制。 加快措施布局应对转型期难题 中国工程院院士舒印彪在一篇署名文章中表示, 能源电力行业技术资金密集,存在高度的路径依赖,技术路线试错成本极高,适宜采取渐进过渡式发展方式。近期应重点挖掘成熟技术的潜力,支撑新能源快速发展,同步开展颠覆性技术攻关;远期在颠覆性技术取得突破后,推动电力系统逐步向适应颠覆性技术的新形态转型。 在转型期,着眼于电力安全保障和低碳发展,业内建议要从“软件”和“硬件”两方面入手。“软件”方面,转型期间首先要充分发挥市场配置资源的重要作用。打破省份之间的市场壁垒,建立适应大范围市场运作的输配电价机制,完善网源荷储协调互动机制,推动建设全国统一电力市场。 其次,全面拓展电力消费新模式。华北电力大学经济与管理学院教授袁家海建议,把用户侧资源激活,实现更好的电力平衡。随着新能源占比提高,出力比较任性,这时候就不能源随荷动,只能源荷互动,新能源出力比较低的时候,引导需求,能少用电就少用电,新能源大发的时候则反之。归根到底是要有市场的激励机制。 “硬件”方面,一是要完善电源侧建设。推进西部、北部地区大型新能源基地建设,因地制宜发展东中部地区的分布式新能源,推动海上风电逐步向远海拓展。煤电从“增容控量”“控容减量”到“减容减量”,发挥托底保障作用;重点推进西南地区的优质水电建设;安全有序开展沿海地区的核电建设,适时推动内陆核电建设。 二是加强跨省、跨区输电通道建设。基于我国能源资源与电力需求地理分布不均衡这一矛盾,加强跨省、跨区输电通道建设。同时,推动建设适应分布式、微网发展的智能配电网,促进电、冷、热、气等多能互补与协调控制,满足分布式清洁能源并网、多元负荷用电的需要,促进终端能源消费节能提效。 三是加强储能建设。鉴于抽水蓄能规划建设周期较长,而电力系统已面临调节能力不足的现状,压缩空气储能、飞轮储能、电化学储能、电磁储能、储热、化学储能等新型储能技术将成为构建新型电力系统的重要基础,有望在长周期平衡调节、安全支撑等方面发挥关键作用。
  • 《世界风能研究面临三大挑战》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-11-08
    • 在美国能源部国家可再生能源实验室(NREL)的领导下,一个国际科学家团队确定了全球风能研究面临的三个最大挑战。这项研究已发表在最近的《科学》杂志上。   近几十年来,风能已成为全球能源不可或缺的一部分。但要释放风能的全部潜力并满足全球对清洁能源的需求,还需要更多的创新。来自美国、德国、丹麦、芬兰、瑞典、西班牙和挪威的风能专家在《科学》杂志上提出了当今风能研究面临的三个最大挑战。   第一个挑战是要更好地了解大气中的风力环境。为了获得更多的风能,风力涡轮机建造得越来越高,彼此之间的距离也越来越远。因此,研发人员必须了解在这些海拔高度下的风力环境。之前,运营商使用简化的物理模型和简单的观测技术,可以在一般地形中安装风机,但是对于复杂地形的大气风力知识知之甚少。如果能更精确地计算出复杂地形下的风力条件,则可以进一步在经济和技术上优化风机,将其安装在适当的位置。   第二个挑战是解决巨型风机的旋转机械结构和系统动力学问题。风力涡轮机是目前世界上最大的柔性旋转机械,其叶片长度超过80米,塔架高度超过100米。相比之下风机的转子所扫过的区域相当于空客A380-800的三架最大客机的机头。随着风力涡轮机变得越来越大,需要新的材料和制造工艺来解决可伸缩性、运输和回收问题。上一代风力涡轮机设计时使用的许多简化条件不再有效。风能研究人员不仅必须了解大气,还需要评估如何同时确保结构安全和高效发电。   第三个挑战是设计和操作风力涡轮机,使其能够支持并提高电网的可靠性和弹性。来自风能和太阳能的更高馈入将极大地改变未来的电网。创新的控制概念可以利用风力涡轮机的特性来优化能源产量,同时支持电网稳定性。通过评估传感器的测量结果,可以提高风能产量,降低成本,并使操作适应电网要求。为了实现未来的愿景,需要进行广泛的研究,重点是模拟大气流动,各个涡轮机动力学以及与高级电力系统结合的系统控制。