《新加坡国立大学开发出新型三结钙钛矿/硅串联太阳能电池》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2024-03-12
  • 转自全球技术地图

    据TechXplore网站3月5日消息,新加坡国力大学研究团队开发出一种新型三结钙钛矿/硅串联太阳能电池,该电池可以在1平方厘米的太阳能吸收面积内实现27.1%的电力转换效率。目前的多结太阳能电池技术存在许多问题,例如能量损失导致低电压和设备在运行过程中的不稳定。为解决这些问题,研究人员将氰酸盐集成到钙钛矿太阳能电池中,设计出一种新的氰酸盐集成钙钛矿太阳能电池,该电池稳定且节能。在此基础上,研发人员将钙钛矿太阳能电池和硅太阳能电池堆叠在一起,形成双结半电池,随后连接氰酸盐集成钙钛矿太阳能电池,组装成三结钙钛矿/硅串联太阳能电池。虽然该电池结构复杂,但十分稳定。这项新技术不仅可用于解决轻钙钛矿太阳能电池能量损耗问题,还为基于钙钛矿的三结太阳能技术的进一步发展提供了新方向。相关研究成果发表于《自然》期刊。

  • 原文来源:https://techxplore.com/news/2024-03-triple-junction-tandem-solar-cells.html
相关报告
  • 《新加坡国立大学开发太阳能电池技术 使功率转换效率达到23.6%》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-01-25
    • 据外媒报道,新加坡国立大学(NUS)的研究团队,使由钙钛矿和有机材料制成的太阳能电池在能量转换效率方面创下了新纪录。这项技术突破为制造柔性、轻量、低成本和超薄光伏电池铺平了道路,有望为汽车、船舶、百叶窗和其他应用提供动力。 (图片来源:新加坡国立大学) 主要研究人员、新加坡国立大学化学与生物分子工程系的Hou Yi教授表示:“太阳能电池的高功率转换效率,对于在有限面积内产生更多的电能,具有重要意义。这反过来又降低了产生太阳能的总成本。” 新加坡国立大学化学与生物分子工程系研究员 Dr. Chen Wei表示:“这项研究的主要目标是提高钙钛矿/有机串联太阳能电池(perovskite/organic tandem solar cells)的功率转换效率。在最新的工作进展中,研究人员已证明其功率转换效率可达到23.6%,这是目前此类太阳能电池实现的最佳性能。” 目前,其他关于钙钛矿/有机串联太阳能电池的研究报告,大约可达到20%的功率转换效率。相比之下,这一研究成果实现了重大飞跃,接近传统硅太阳能电池26.7%的功率转换率,这是当前太阳能光伏市场中占主导地位的技术。 这项研究是与香港大学(University of Hong Kong)和南方科技大学(Southern University of Science and Technology)的研究人员合作进行的。 太阳能领域新趋势 近年来,作为一种可持续性能源,太阳能电池技术取得了巨大进展。太阳能电池的可靠性、效率、耐用性和价格,对全球太阳能项目的商业潜力及大规模实施具有重要影响。 太阳能发电厂中使用的传统太阳能电池基于单结架构。在工业生产过程中,单结太阳能电池的实际功率转换效率被限制在27%左右。推动太阳能生产的前沿发展,需要新型太阳能电池解决方案,以提供更好的功率转换表现。 为了将太阳能电池的功率转换效率提高到30%以上,需要堆叠两个或多个吸收层(多结电池)。使用两种不同类型的光伏材料制造串联太阳能电池,是一个热门研究领域。 在最新项目中,该团队在钙钛矿/有机串联太阳能电池领域开辟了新天地。其发现为制造轻巧且可弯曲的薄膜串联太阳能电池打开了大门,这种电池可能具有广泛的应用。 电力转换效率的突破 串联太阳能电池包括通过互连层(ICLs)电连接的两个或多个子电池。ICL在决定设备的性能和再现性方面起着关键的作用。有效的ICL应该具有化学惰性、导电性和光学透明性。 虽然钙钛矿/有机串联太阳能电池对下一代薄膜光伏很有吸引力,但其效率落后于其他类型的串联太阳能电池。为了解决这项技术挑战,该团队开发了一种新颖而有效的ICL,可降低串联太阳能电池的电压、光及电损耗。这一创新可明显提高钙钛矿/有机串联太阳能电池的效率,实现了23.6%的功率转化率。 研究人员表示,这项研究展现了钙钛矿基串联太阳能电池在未来光伏技术商业应用中的巨大潜力。在这项新发现的基础上,希望进一步改善串联式太阳能电池的性能,并扩大这项技术的应用范围。
  • 《Science:高性能钙钛矿-硅串联太阳能电池的界面工程》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-11-12
    • 来自材料牛 【导读】 串联太阳能电池由硅电池覆以钙钛矿太阳能电池(PSC)组成,可以提高商业批量生产的太阳能电池的效率,并且可以超过单结电池的限制,而不增加实质性的成本。目前,钙钛矿/CIGSe串联电池的功率转换效率达到24.2%,全钙钛矿串联电池达到24.8%,钙钛矿/硅串联效率最高值则为26.2%。然而,这些以钙钛矿为基础的串联太阳能电池仍然有改进的空间,因为所有这些串联技术的实际限制都远高于30%。 钙钛矿-硅串联太阳能电池,能够克服传统硅太阳能电池功率转换效率限制的可能性。为了提高光学性能,科学家已经提出了各种结构串联器件,但优化表面结构晶圆上的薄膜生长,仍然是一个挑战。 【成果掠影】 德国柏林工业大学的Steve Albrecht团队,证明了双端子单片钙钛矿-硅串联太阳能电池的改进的稳定性和效率,需要减少复合损耗。通过将三卤化物钙钛矿(1.68 eV带隙)与哌嗪碘化物界面改性相结合,改进了能带对准,降低了非辐射复合损失,并增强了在电子选择性接触处的电荷提取。特定的钙钛矿组成(3 Hal)和PI浓度(0.3mg ml-1)下,PI的主要作用不是钙钛矿表面的化学钝化,而是允许导带(CB)和最低未占据分子轨道之间的偏移显著降低(约350 mV)。因此,电子的准费米能级可以移动得更靠近钙钛矿CB边缘。此外,从电荷分离的角度来看,表面光电压测量显示在PI的存在下,在钙钛矿表面的电子选择性增加,这与已报道的PI在钙钛矿表面上的工作机制不同。太阳能电池在p-i-n单结中显示出高达1.28V的开路电压,在钙钛矿-硅串联太阳能电池中显示出高达2.00 V的开路电压。串联电池实现了高达32.5%的认证功率转换效率。该项工作以标题为:“Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells”发表在Science上。 【核心创新点】 将具有适合于串联集成的带隙(68 eV)的3Hal钙钛矿与PI界面改性相结合,并将其与常用的氟化锂(LiF)中间层进行比较。应用钙钛矿价带顶(VBM)的详细模型结合功函数(WF)来精确地确定电离能,从而评估界面改性的可能偶极效应。 【成果启示】 目前光伏(PV)器件市场由晶体硅(c-Si)器件主导,但是钙钛矿-硅串联结构还需要提高其功率转换效率(PCE)。直接连接c-Si底电池和钙钛矿顶电池的双端子器件更有效地使用光,因为高能量光子可以被钙钛矿顶电池吸收,并且由钙钛矿透射的低能量光子可以被c-Si底电池吸收,这种方法的PCE为33.7%。然而,考虑到单片钙钛矿-硅串联晶体的详细平衡极限为45.1%,可以进行进一步的改进,特别是关于开路电压(VOC)。为了在空气质量系数(AM)1.5G太阳光谱和电流匹配条件下达到最高可能的效率,钙钛矿的最佳带隙为1.73eV。有限的钙钛矿厚度和寄生吸收将最佳钙钛矿带隙降低至~ 1.68eV。具有该带隙的钙钛矿组合物需要高溴化物含量,并且面临由相偏析引起的不稳定性,这导致VOC下降。为了解决这个问题,将有效的钙钛矿组合物与界面改性相结合。彻底的分析揭示了导致单结太阳能电池和钙钛矿-硅串联太阳能电池中的高VOC值和因此的高PCE值的机制。 原文详情:https://www.science.org/doi/10.1126/science.adf5872