《美国国会准备建立微电子学计划》

  • 来源专题:集成电路
  • 编译者: shenxiang
  • 发布时间:2020-12-14
  • 据战略前沿科技公众号报道,2020年12月初,美国国会通过了2021财年《国防授权法案》,其中包括微电子学研发和生产以及人工智能等方面的跨部门行动条款。在微电子学方面包含有:建立一个美国国家半导体技术中心,以支持公私研发项目;财政资助跨国项目,以发展“安全可衡量”的微电子学并建立联合供应链;创建商务部项目,为“美国用于半导体制造、组装、测试、先进封装或研发的设施和设备”提供联邦财政补贴。对于国会应为整个微电子学相关计划或其组成单元提供多少资金,此次立法并没有提出具体建议。

    美国2021财年《国防授权法案》中有关半导体发展激励措施的主要部分如下:

    1.半导体领域的激励措施

    商务部应该创建财政补贴项目,为半导体领域的实体提供联邦资助,以鼓励它们在美国投资用于半导体制造、组装、测试、先进封装或研发的设备和设施,每个补贴项目不应超过30亿美元,在特殊情况下可申请更高补贴。实现该项目计划,需要联邦相关政府部门间的协调以及的美国政府问责局的审查。

    2.国防部关于微电子学的举措

    (1)建立公私合作联盟等组织模式

    美国国防部应联合商务部、能源部、国土安全部和国家情报局建立公私合作伙伴关系,鼓励建立一个或多个公司联盟或者其他类似的公私合作关系,以确保安全可测量的微电子学产品的开发和生产,包括集成电路、逻辑器件、存储器,以及涉及国家安全应用的此类微电子组件的封测。该部分激励措施可能包涵商务部补贴的使用,针对美国具备商业竞争和可持续的微电子制造和先进研发设施的建立、扩张以及现代化,也会提供相关激励措施。

    (2)建立微电子学国家研发网络

    美国国防部可以建立一个微电子学国家研发网络,一方面实现美国微电子学创新环节中实验室到制造的过渡;另一方面增强美国在微电子学领域的全球领导地位。

    3.审查微电子学技术在美国工业基地中的地位

    本法案颁布后,商务部长应在180天内与国防部长、国土安全部长、能源部长等协商进行审查,评估美国工业基地对国防的支持能力,尤其要考虑供应链的全球性、以及美国工业基地与外国工业基地之间在微电子学制造、设计和终端使用方面的重要依赖关系。

    4.资助安全可衡量的半导体及其供应链的开发和采用

    财政部被授权设立“多边半导体安全基金”,包含为达此目的任何拨款资金,以发展安全可衡量的半导体及其供应链。财政部联合相关政府部门有权与合作政府建立共同资助机制来合理使用该基金,包括跨国研发合作。美国通过跨国基金项目,来确保可信外国合作伙伴的贡献和承若,包括成本共享和其它发展安全可衡量的半导体及其供应链的合作措施。

    5.先进微电子学研发方面

    1)设立微电子学小组委员会

    美国总统应就美国在微电子技术和创新方面的领导力和竞争力问题,设立国家科学技术委员会下属小组委员会。该小组委员会成员包括国防部长、能源部长、国家科学基金会主任、商务部长、国务秘书、国土安全部长、美国贸易代表、国家情报局局长、以及总统认为合适的其他联邦部门或机构的负责人。该小组委员会的职责包括制定微电子学国家战略、促进研发协调。法案发布后,总统需一年内向国会提交微电子学国家战略制定进展;委员会五年后需更新该战略;十年后将终止该小组委员会。

    2)设立微电子学咨询委员会

    商务部长应与国防部长、能源部长和国土安全部长协商,设立一个咨询委员会。该咨询委员会应由来自工业界、联邦实验室、学术机构的代表组成。咨询委员成员数量不少于12名,他们有权就美国政府关于微电子学研发、制造和政策事宜向美国政府提供建议。

    3)建立国家半导体技术中心

    商务部与国防部合作建立国家半导体技术中心,以进行先进半导体技术的研究和原型设计,进而确保美国本土供应链的安全和增强美国的经济竞争力。该中心将以公私合作联盟的形式运行,合作伙伴将来自私营部门、能源部和国家科学基金会。

    4)启动国家先进封装制造项目

    商务部长应启动国家先进封装制造项目,该项目由美国NIST领导。通过该项目,NIST将联合国家半导体技术中心加强美国国内生态的半导体先进测试、组装、封装能力,同时联合可能成立的美国国家制造业研究所促进美国先进封装。

    5)NIST开展微电子学研究

    美国NIST应开展微电子学研究项目,在测量科学、标准、材料性能、仪器、测试和制造能力方面取得突破进展,以加快下一代微电子学计量的基础研发,同时确保美国在该领域的国际竞争力和领导力。

    6)建立半导体国家制造业研究所

    美国NIST可以建立致力于半导体制造的美国国家制造业研究所,以支持半导体设施维修虚拟化和自动化的研究;开发新的先进测试、组装和封装能力;培养半导体产业劳动力。

    7)制定半导体本土生产政策

    半导体激励措施的执行机构需制定相关政策,要求半导体生产的本土化,同时确保微电子研发成果的知识产权不受竞争对手的损害。

  • 原文来源:https://mp.weixin.qq.com/s/hSRJ3qUKlp_wJiBzvU2FVA
相关报告
  • 《美国印第安纳大学宣布投资1.11亿美元促进美国微电子产业发展》

    • 来源专题:集成电路
    • 编译者:李衍
    • 发布时间:2023-11-16
    • 据2023年10月10日官方消息,美国印第安纳大学(Indiana University,简称IU)决定在未来几年内投资至少1.11亿美元,以提升其在微电子和纳米技术领域的全美领先地位。该校的投资预计将推动印第安纳州乃至美国的微电子产业发展,同时通过与美海军水面作战中心克兰分部(Naval Surface Warfare Center, Crane Division)的紧密合作,加速解决国家安全方面的重大挑战。 印第安纳大学的此次投资内容具体包括:(1)未来五年将投资2350万美元用于聘请25名微电子、纳米技术、人工智能、机器学习和网络安全领域新教师,重点招聘具有国防部经验、创造力和创业能力的教师以开发两用技术和相关能力;(2)将投资5350万美元用于实验室和设施设备以及教师启动资金,以支持国防关键领域研究;(3)将投资1000万美元成立新的可靠和可信赖电子学中心,专注于辐射效应建模与仿真以及抗辐射加固技术设计的研究活动;(4)投资1350万美元用于新微电子学和纳米制造领域学位项目的实施以及相关加工设备的投入,以加强IU学位项目以及国防伙伴关系;(5)在未来五年每年投入100万美元,用于支持教师在生物技术和合成生物学等关键技术领域的创新研究。 这些投资举措与印第安纳大学的2030战略(IU 2030 strategic plan)计划紧密相连,该计划的目标之一是建立与州或国家经济发展间的战略联系。此项投资响应了战略计划的承诺目标,将推动印第安纳州和全美微电子学产业的增长,同时深化了与国防承包商以及军民融合技术公司的合作关系。 此次与美海军水面作战中心的合作,对于印第安纳大学来说具有重要意义。通过与军方的合作,学校可以获得更多的实践机会和资源支持,推动微电子、纳米技术等领域的科研成果转化为实际应用。同时,这种合作伙伴关系也为学校提供了更多与产业界合作的机会,促进产学研的深度融合。
  • 《美国发布《微电子和先进封装技术路线图》》

    • 来源专题:集成电路
    • 编译者:李衍
    • 发布时间:2023-03-31
    • 2023年3月1日,美国半导体研究联盟(Semiconductor Research Corporation, SRC)在美国商务部国家标准与技术研究院(NIST)资助下编制并发布《微电子和先进封装技术路线图》(以下简称“MAPT路线图”)临时报告,从生态系统、系统架构和应用、系统集成和基础微电子四个层面,规划并梳理关键核心技术和培育专业人才队伍所需的步骤,以确保未来美国在设计、开发和制造异质集成系统级封装(SiP)方面的创新能力。MAPT路线图以2021年版《半导体十年计划》和《异构集成路线图》为基础进行构建,提出了一个新的全面的3D半导体路线图,以指导即将到来的微电子革命。 MAPT路线图仍在开发,临时报告旨在广泛征集公众意见以实现高质量的最终路线图。MAPT路线图共包含12章。第一章为MAPT路线图报告概况,其余11章具体包括: 1. 可持续发展与能源效率。根据《半导体十年计划》,现阶段计算解决方案不可持续,随着计算需求的增加,计算的能源需求将超过市场上可用的能源。如果未来十年能源效率没有实现1000倍的提高,2040年后没有实现1000000倍的提高,计算将处于能源受限状态,不会增长、驱动新市场或刺激全球GDP增长。此外,由于全球半导体需求日益增长,以及美国《芯片法案》目标,预计未来几年美国的芯片制造将会增加。同时,从环境和人类健康的角度来看,芯片制造和先进封装所涉及的化学品、材料和工艺以及产品设计本身都必须尽可能可持续。可持续发展与能源效率的跨领域需求包括:(1)提高计算中的能源效率;(2)在半导体器件和系统的全生命周期中(如:设计、开发、制造、使用、产品使用寿命期后废弃管理)提高环境可持续性和效率;(3)随着社会需求的变化,可持续解决方案和系统创新所需的劳动力的发展。 2. 材料、衬底、供应链。本章聚焦微电子封装供应链生态的输入端,材料的来源、环境因素、成本等都会影响封装供应链的韧性和可持续性。MAPT路线图旨在确定未来几代先进电子封装结构中将使用的材料和化学品,重点考虑因素包括:高可靠性材料、新工艺材料、电气性能材料、机械性能/工艺可操作性材料、热管理材料、可靠性/温度/湿度性能优越材料和环境可持续材料。 3. 设计、建模、测试和标准。本章涉及未来的设计自动化组合和行业标准开发。这些设计工具和标准将有效帮助芯片和系统设计者探索和优化不同设计领域以及性能、功率/能源、面积/体积、保密性和安全性等指标,并将成为半导体行业的关键推动者。 4. 制造和工艺开发计量学。本章涵盖了半导体材料和器件研究、开发和制造等各个方面的测量。“表征和计量”可离线、在线和线上使用,包括物理和电气测量的所有方面。“表征和计量”涵盖了从原子尺度到宏观尺度的测量。对新材料和新结构的探索是表征密集型的,而且随着工艺技术的日益成熟,晶圆厂内计量(in-fab metrology)的使用也在增加。本章描述了MAPT路线图所有领域的表征和计量,从材料和器件到先进封装和异构集成以及系统。 5. 安全和隐私。本章确定了新出现的安全和隐私挑战,并概述了解决这些挑战的方法。本章对整个技术堆栈进行了全面分析,但重点强调了对制造和封装技术的影响。本章是对2019年IEEE发布的《异构集成路线图》(Heterogeneous Integration Roadmap)安全章节的补充。本章的主要主题包括:(1)异构集成中潜在的硬件安全漏洞;(2)确定SiP安全内容的可行策略,以及定义合理指标以评估安全弹性实施的可行策略;(3)针对特定应用的攻击预测和防御机制。 6. 劳动力发展。本章概述了未来十年MAPT领域劳动力的需求。美国上下一致认为,目前的人才库以及创建和支持美国国内MAPT劳动力的途径都远远达不到预期需求,并已成为关系美国经济和国家安全的关键点。目前,从技术认证师、专科学位操作员、维护工程师到硕士和博士工程师,MAPT领域不同教育水平的工人在数量、知识、技能和能力方面都不足以满足未来的需求。本章内容主要包括:(1)微电子劳动力需求的预测/时间表;(2)全国“赢得人心”运动的路线图;(3)整个MAPT生态系统的整体、有效的劳动力发展框架。 7. 应用驱动因素和系统要求。本章描述了各种应用领域的影响及其对MAPT路线图所涵盖的关键使能技术方向的影响,并具体讨论了数据中心和高性能计算、移动通信和基础设施、边缘计算和物联网、汽车、生物应用和健康、安全和隐私、以及防御和恶劣环境等应用实例。每一个应用领域都将以不同方式发展,并需要领域特定的系统来实现更高水平性能。 8. 先进封装与异构集成。本章重点介绍了微电子芯片的先进封装和异构集成的各个方面。由于使用更精细的晶体管(低于20nm)微缩芯片的成本优势正在减弱,因此有必要采用一种新方法,即将单个晶粒分解为更小的芯粒(chiplet)并在适当的技术制程上进行经济有效地制造。为了通过芯粒和无源元件的异构集成实现功能“缩放”,封装必须从“芯片载体”过渡到“集成平台”。随着微电子行业朝着为每个应用定制更高性能、更低功耗的解决方案发展,芯粒数量将继续增加。下一代封装技术需要支持这种异构集成的爆炸式增长,实现可以容纳极细间距I/O芯片和极细间距电路系统的互连。 9. 数字处理。本章重点介绍了已经渗透到现代社会各个方面的数字处理技术和基础设施。如今,产率问题、散热设计功耗(TDP)的实际限制、先进技术制程的高设计和制造成本对实现终端用户期望构成威胁。与此同时,人工智能/机器学习相关应用、高级认知需求、区块链等方面都要求处理不断增加的数据集,并执行越来越复杂的计算。单芯片封装解决方案不再适配数据密集型或高性能处理需求。此外,数据处理成本现在主要由将数据移动的能耗决定,包括在处理数据的微芯片内移动数据的能耗。将不同的未封装芯粒进行单片异构集成从而形成SiP,已成为解决这些挑战的重要方案。 10. 模拟和混合信号处理。模拟和混合信号处理驱动着模拟硬件的新兴应用和趋势,本章概述了该领域的短期、中期和长期前景。模拟元件对于世界-机器接口、传感、感知、通信和推理系统,以及所有类型的电气系统的电力分配、输送和管理至关重要。模拟信号处理或“模拟边缘”处理有助于减少必要的数字处理数量。本章的主要主题包括:(1)模拟和混合信号电路及处理;(2)电力转换和管理;(3)智能传感接口;(4)射频(RF)到太赫兹(THz)的器件、电路和系统(RF-to-THz devices, circuits and systems)。 11. 光子学和微机电系统。本章阐述了存储器、计算、传感、通信等所必需的重要配套技术。本章是对2021年荷兰PhotonDelta联盟和麻省理工学院微光子学研究中心发布的《国际集成光子学系统路线图》(Integrated Photonics System Roadmap – International, IPSR-I)的补充。本章的主要主题包括:(1)基于微机电系统和光子学的传感器和执行器;(2)用于通信的集成光子学;(3)用于存储器和计算的光子I/O;(4)材料和加工;(5)设计和建模支持。