《广州健康院揭示核糖体蛋白调控蛋白组稳态维持精子发生的作用》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2021-12-20
  • 12月17日,中国科学院广州生物医药与健康研究院戚华宇课题组研究揭示了核糖体蛋白通过调控蛋白翻译机器和蛋白质量控制维持小雄性生殖细胞发育的作用,相关成果以Proteostasis regulated by testis-specific ribosomal protein RPL39L maintains mouse spermatogenesis为题在线发表在iScience。

      哺乳动物雄性配子-精子-是传递遗传物质、维持与繁衍物种以及进化的基础。由于精子发生具有周期性、长期性和受动物体内、外环境因素影响等特点,精子质量的控制与遗传疾病的发生、生殖健康等具有密切的关系。成年动物,包括人类,在急性损伤(如癌症的化学和放射性治疗)和年龄的增长等条件下,生殖细胞发育潜力与功能往往衰退并伴随基因组的遗传变异,不但造成生殖健康、疾病等问题,而且可通过遗传或表观遗传的方式影响下一代的健康。如何诊断、治疗相关疾病和健康问题,改善和提高生殖细胞功能是大众所关注的问题;由于生殖细胞是动、植物体中唯一在亲子代间延续生存的细胞类型,对生殖细胞发育调控机制的基础研究也在发育、干细胞、再生与衰老等领域具有广泛的影响。

      成年动物的精子发生起始于精原干细胞,经历有丝分裂、减数分裂和细胞的形态发生等阶段。近年来研究指出,小鼠及人类基因组中有90%以上的基因在雄性生殖细胞的发育过程中将经历表达、沉默等的调控,在多数发育阶段有数千种不同蛋白的翻译发生。生殖细胞在不同发育阶段如何选择发育与功能的调节方式?研究组在前期研究中发现部分RNA结合蛋白特异性地富集于精原干细胞中,包括核糖体亚基蛋白,如:RPL39L。通过小鼠遗传学、细胞生物学以及生物化学等实验,研究人员发现特定核糖体蛋白对细胞中蛋白翻译机器具有非组成型(constitutive)的调节(regulatory)作用:RPL39L的缺失造成了进入分化阶段的精原干细胞的发育障碍,并在后续发育过程中对精子细胞的数量和质量产生影响。进一步研究发现,虽然缺少RPL39L的核糖体依然可担负信使RNA的翻译作用,但细胞中蛋白合成的效率、新生蛋白的质量均受到负面影响,产生的精子由于线粒体结构和功能的障碍缺少运动性能。在对小鼠中雄性性腺的化学损伤模型的分析中,研究人员发现,生殖细胞蛋白组稳态的异常影响了生精细胞的再生,并使得成年动物的精子发生过程产生退行性变化。

      上述研究揭示了核糖体蛋白不仅可做为细胞中蛋白翻译机器的组成部分,且具有调节核糖体产生和新生蛋白质量控制的作用。实验结果也揭示了生殖干细胞在自我更新与分化时对细胞中蛋白合成调控作用的不同依赖性,为深入研究细胞中的功能单位-蛋白质-合成在细胞命运变化和相关组织再生的问题提供了基础。

      核糖体蛋白在不同细胞中具有表达的异质性,然而它们对蛋白合成的调节作用目前仍不完全清楚。在对RPL39/RPL39L同源蛋白的研究中,研究组在早前的研究中,发现它们或具有功能上的同源性,并可偶联线粒体功能促进细胞的增殖生长。 相关研究结果也于近期发表于International Journal of Biochemistry and Cell Biology (2021 Oct,139:106070.doi:10.1016/j.biocel.2021.106070)。

      研究得到国家卫计委重点研发计划生殖健康及重大出生缺陷防控研究专项、中国科学院再生生物学重点实验室、广东省干细胞与再生医学重点实验室、广东省自然科学基金委、广州生物岛实验室前沿探索项目以及中国科学院广州生物医药与健康研究院等的支持。相关实验得到张小飞课题组和广州生物岛实验室蛋白质中心的合作与帮助。

  • 原文来源:https://www.cell.com/iscience/fulltext/S2589-0042(21)01367-5
相关报告
  • 《研究发现精子发生中的新型核糖体能够产生精子特异蛋白组》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-02-13
    •  核糖体是最重要的聚合酶之一,以信使RNA(mRNA)为模板,氨酰化tRNA(aa-tRNA)为底物,合成蛋白质的工厂。核糖体在每个哺乳动物的细胞中有百万至千万的拷贝。核糖体本身占有细胞的大量物质占比,核糖体RNA(ribosomal RNA,rRNA)占所有细胞类型中总RNA的80-85%,核糖体蛋白(ribosomal protein,rProtein)在哺乳动物中占总蛋白量的5-10%,总蛋白拷贝数的10-20%(图1)。   12月14日,南京医科大学沙家豪、郭雪江团队与中国科学院生物物理所秦燕团队合作,在《自然》(Nature)上,发表了题为A male germ-cell-specific ribosome controls male fertility的研究论文。该研究发现精子发生中的新型核糖体(RibosomeST)能够产生精子特异蛋白组。   核糖体为直接20~30nm的近球体,在细胞的高分辨成像中可看到核糖体的广泛分布(图2)。在快速增殖的细胞中,核糖体占有的物质、能量比例更高,组织细胞发生发展、决定细胞命运(秦燕课题组,Science Bulletin综述文章,2022年7月)。特殊的核糖体能够产生特殊的蛋白组,从而决定细胞的功能和命运,这是近年来的重要命题。   在雄性生殖细胞中,核糖体大亚基蛋白L39,在精子发生的减数分裂后会发生转移并使用L39L的形式在核糖体上。该研究发现L39是核糖体大亚基新生肽链通道上的重要成分,L39L替换L39后,这个通道可以变宽很多,利于精子成熟中大量正电蛋白的产生。那么,核糖体L39如何决定精子生殖蛋白组?   研究人员通过L39L型核糖体(RibosomeST)和普通L39型核糖体(Ribosome)的超分辨cryo-EM结构解析(分辨率在L39的2.82埃,L39L的3.03埃)发现,核糖体大亚基新生肽链通道上的重要成分,L39L替换L39后,这个通道可以变宽很多,利于精子成熟中大量正电蛋白的产生。   精子发生是物种繁衍的核心功能,少弱精症是近年来的重要国民健康问题,该研究将为相关疾病提供重要标记物和治疗靶点。
  • 《广州生物院揭示多梳蛋白PCGF5调控胚胎干细胞向神经前体细胞分化的相关分子机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-05-18
    • 5月15日,中国科学院广州生物医药与健康研究院姚红杰研究员课题组在Nature Communications在线发表了题为“PCGF5 is required for neural differentiation of embryonic stem cells”的研究成果。该研究工作揭示了多梳蛋白PCGF5调控胚胎干细胞向神经前体细胞分化的相关分子机制。 表观遗传修饰在维持干细胞特性及细胞命运转变过程中发挥着重要作用。多梳蛋白作为重要的表观遗传修饰因子首先在果蝇中被发现,是表观遗传修饰的重要调控因子。在高等动物中,多梳蛋白抑制复合物1(Polycomb Repressive Complex 1, 简称PRC1)组成复杂,根据PRC1复合物组成成分不同,PRC1复合物可分为经典和非经典两大类,其功能表现多种多样。该课题组于2017年4月在《Cell Stem Cell》发表的文章中曾报道了非经典多梳蛋白RYBP分别存在于PRC1复合物和含有多能性因子OCT4的两种复合物中;RYBP通过PRC1依赖和非依赖两种方式共同发挥作用进而促进体细胞重编程。 通过筛选影响干细胞向神经前体细胞分化的表观遗传因子,该课题组发现PRC1复合物的非经典亚基PCGF5在干细胞神经分化过程中发挥重要作用。他们研究发现敲除PCGF5虽然不影响干细胞的干性维持和自我更新,但却显著抑制了胚胎干细胞向神经前体细胞分化。在干细胞向神经外胚层定向分化过程中,PCGF5可以通过RING1B依赖的泛素化负向调控SMAD2/TGF-β信号通路,而敲除PCGF5导致分化过程中SMAD2/TGF-β信号通路被激活,使干细胞向神经前体细胞分化受到抑制。此外在干细胞神经分化过程中,敲除PCGF5使组蛋白H2AK119ub1和H3K27me3修饰在神经分化相关基因启动子区不能够有效消减。而且在干细胞神经分化过程中,PCGF5在全基因组的分布不仅与基因抑制相关的组蛋白修饰H2AK119ub1和H3K27me3共定位,更多的PCGF5结合在高表达的基因上,并与基因激活相关的组蛋白修饰H3K27ac和H3K4me3存在共定位。该研究进一步揭示PCGF5可能具有激活干细胞向神经前体细胞分化相关基因转录的功能。 这一研究结果表明在神经分化过程中,PCGF5一方面通过发挥PRC1复合物的功能抑制SMAD2/TGF-β信号通路,另一方面参与激活神经分化相关基因,进而调控干细胞向神经前体细胞分化的进程。该研究揭示了多梳蛋白PCGF5在胚胎干细胞命运转变过程中的重要功能,突出了多梳蛋白不仅仅在基因转录调控抑制中发挥重要的功能,也在特定的时空具有激活基因转录的功能,对于后续研究神经系统相关疾病发生过程中关键蛋白的调控作用和机制奠定了一定基础,并为阐明相关疾病发生的分子机制及发现新的治疗靶点提供了思路。 姚明泽博士为该论文的第一作者,姚红杰研究员为论文的通讯作者。该研究是中国科学院广州生物医药与健康研究院姚红杰课题组与香港中文大学的王华婷、孙昊课题组合作完成。该研究得到了来自中国科学院“器官重建与制造”战略性先导科技专项、国家重点研发计划、国家自然科学基金、广东省干细胞与组织工程重大科技专项等项目的资助。