《Radioactive Iron Rain: Transporting $^{60}$Fe in Supernova Dust to the Ocean Floor》

  • 来源专题:中国科学院紫金山天文台科技信息监测服务
  • 编译者: zhoubz
  • 发布时间:2016-04-11
  • Several searches have found evidence of $^{60}$Fe deposition, presumably from a near-Earth supernova (SN), with concentrations that vary in different locations on Earth. This paper examines various influences on the path of interstellar dust carrying $^{60}$Fe from a SN through the heliosphere, with the aim of estimating the final global distribution on the ocean floor. We study the influences of magnetic fields, angle of arrival, wind and ocean cycling of SN material on the concentrations at different locations. We find that the passage of SN material through the mesosphere/lower thermosphere (MLT) is the greatest influence on the final global distribution, with ocean cycling causing lesser alteration as the SN material sinks to the ocean floor. SN distance estimates in previous works that assumed a uniform distribution are a good approximation. Including the effects on surface distributions, we estimate a distance of $46^{+10}_{-6}$ pc for a $8-10 \ M_{\odot}$ SN progenitor. This is consistent with a SN occurring within the Tuc-Hor stellar group $\sim$2.8 Myr ago with SN material arriving on Earth $\sim$2.2 Myr ago. We note that the SN dust retains directional information to within $1^{\circ}$ through its arrival in the inner Solar System, so that SN debris deposition on inert bodies such as the Moon will be anisotropic, and thus could in principle be used to infer directional information. In particular, we predict that existing lunar samples should show measurable $^{60}$Fe differences.

相关报告
  • 《NEARBY SUPERNOVAS SHOWERED EARTH WITH IRON》

    • 来源专题:中国科学院紫金山天文台科技信息监测服务
    • 编译者:zhoubz
    • 发布时间:2016-04-07
    • We all know that we are “made of star-stuff,” with all of the elements necessary for the formation of planets and even life itself having originated inside generations of massive stars, which over billions of years have blasted their creations out into the galaxy at the explosive ends of their lives. Supernovas are some of the most powerful and energetic events in the known Universe, and when a dying star finally explodes you wouldn’t want to be anywhere nearby—fresh elements are nice and all but the energy and radiation from a supernova would roast any planets within tens if not hundreds of light-years in all directions. Luckily for us we’re not in an unsafe range of any supernovas in the foreseeable future, but there was a time geologically not very long ago that these stellar explosions are thought to have occurred in nearby space… and scientists have recently found the “smoking gun” evidence at the bottom of the ocean. Two independent teams of “deep-sea astronomers”—one led by Dieter Breitschwerdt from the Berlin Institute of Technology and the other by Anton Wallner from the Australian National University—have investigated sediment samples taken from the floors of the Pacific, Atlantic, and Indian oceans. The sediments were found to contain relatively high levels of iron-60, an isotope specifically created during a supernova. Watch: How Quickly Does a Supernova Happen? The teams found that the ages of the iron-60 concentrations centered around two time periods, 1.7 to 3.2 million years ago and 6.5 to 8.7 million years ago. Based on this and the fact that our Solar System currently resides within a peanut-shaped region virtually empty of interstellar gas known as the Local Bubble, the researchers are confident that this provides further evidence that supernovas exploded within a mere 330 light-years of Earth, sending their elemental fallout our way. “This research essentially proves that certain events happened in the not-too-distant past,” said Adrian Melott, an astrophysicist and professor at the University of Kansas who was not directly involved with the research but published his take on the findings in a letter in Nature. (Source) The researchers think that two supernova events in particular were responsible for nearly half of the iron-60 concentrations now observed. These are thought to have taken place among a a nearby group of stars known as the Scorpius–Centaurus Association, some 2.3 and 1.5 million years ago. At those same time frames Earth was entering a phase of repeated global glaciation, the end of the last of which led to the rise of modern human civilization. While supernovas of those sizes and distances wouldn’t have been a direct danger to life here on Earth, could they have played a part in changing the climate? Read more: Could a Faraway Supernova Threaten Earth? “Our local research group is working on figuring out what the effects were likely to have been,” Melott said. “We really don’t know. The events weren’t close enough to cause a big mass extinction or severe effects, but not so far away that we can ignore them either. We’re trying to decide if we should expect to have seen any effects on the ground on the Earth.” Regardless of the correlation, if any, between ice ages and supernovas, it’s important to learn how these events do affect Earth and realize that they may have played an important and perhaps overlooked role in the history of life on our planet. “Over the past 500 million years there must have been supernovae very nearby with disastrous consequences,” said Melott. “There have been a lot of mass extinctions, but at this point we don’t have enough information to tease out the role of supernovae in them.”
  • 《CO2 abatement from the iron and steel industry using a combined Ca–Fe chemical loop》

    • 来源专题:广州能源研究所信息监测
    • 编译者:giecinfo
    • 发布时间:2016-03-17
    • We report an integrated CO2 capture process to manufacture iron and steel with low CO2 emissions from steel-making plants over a CaO-based, Fe-functionalized CO2 sorbent. This new process relies on a combined Ca–Fe chemical loop, where the exothermic oxidation of FeO provides the heat (or fractions of it) required to drive the endothermic decomposition of CaCO3. A key advantage of coupling a FeO/Fe2O3 redox cycle and a CaO/CaCO3 CO2 capture cycle within the as-prepared materials is that the heat could be transferred from FeO to CaCO3 directly at a molecular level. All materials synthesized require an appreciably reduced net heat, i.e. a decrease of 26–43%, for CaCO3 decomposition during the combined Ca–Fe looping when compared with conventional calcium looping. Importantly, materials CaFe-CA1EG1-pH1, CaFe-CA1EG1-pH2, and CaFe-CA1EG1-pH3 exhibit a fairly stable cyclic CO2 uptake of ∼0.16 gCO2 gsorbent−1 throughout 10 realistic combined Ca–Fe looping cycles. The medium capacity but excellent stability for CO2 capture of the CO2 sorbents makes them a promising alternative of naturally-derived, CaO-based materials, especially for the combined Ca–Fe chemical loop proposed. Using steel slag as feedstock, the material developed is very promising for CO2 abatement from the iron and steel industry accompanied by the recycling of CaO and Fe2O3 components in spent sorbents and recovery of energy from process gases.