《CO2 abatement from the iron and steel industry using a combined Ca–Fe chemical loop》

  • 来源专题:广州能源研究所信息监测
  • 编译者: giecinfo
  • 发布时间:2016-03-17
  • We report an integrated CO2 capture process to manufacture iron and steel with low CO2 emissions from steel-making plants over a CaO-based, Fe-functionalized CO2 sorbent. This new process relies on a combined Ca–Fe chemical loop, where the exothermic oxidation of FeO provides the heat (or fractions of it) required to drive the endothermic decomposition of CaCO3. A key advantage of coupling a FeO/Fe2O3 redox cycle and a CaO/CaCO3 CO2 capture cycle within the as-prepared materials is that the heat could be transferred from FeO to CaCO3 directly at a molecular level. All materials synthesized require an appreciably reduced net heat, i.e. a decrease of 26–43%, for CaCO3 decomposition during the combined Ca–Fe looping when compared with conventional calcium looping. Importantly, materials CaFe-CA1EG1-pH1, CaFe-CA1EG1-pH2, and CaFe-CA1EG1-pH3 exhibit a fairly stable cyclic CO2 uptake of ∼0.16 gCO2 gsorbent−1 throughout 10 realistic combined Ca–Fe looping cycles. The medium capacity but excellent stability for CO2 capture of the CO2 sorbents makes them a promising alternative of naturally-derived, CaO-based materials, especially for the combined Ca–Fe chemical loop proposed. Using steel slag as feedstock, the material developed is very promising for CO2 abatement from the iron and steel industry accompanied by the recycling of CaO and Fe2O3 components in spent sorbents and recovery of energy from process gases.

相关报告
  • 《Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities》

    • 来源专题:生物质生化转化信息监测
    • 编译者:giecinfo
    • 发布时间:2016-03-24
    • Autothermal Chemical-Looping Reforming (a-CLR) is a process which allows hydrogen production avoiding the environmental penalty of CO2 emission typically produced in other processes. The major advantage of this technology is that the heat needed for syngas production is generated by the process itself. The heat necessary for the endothermic reactions is supplied by a Ni-based oxygen-carrier (OC) circulating between two reactors: the air reactor (AR), where the OC is oxidized by air, and the fuel reactor (FR), where the fuel is converted to syngas. Other important advantage is that this process also allows the production of pure N2 in the AR outlet stream. A renewable fuel such as bioethanol was chosen in this work due to their increasing worldwide production and the current excess of this fuel presented by different countries. In this work, mass and heat balances were done to determine the auto-thermal conditions that maximize H2 production, assuming that the product gas was in thermodynamic equilibrium. Three different types of bioethanol has been considered according to their ethanol purity; Dehydrated ethanol (≈100 vol.%), hydrated ethanol (≈96 vol.%), and diluted ethanol (≈52 vol.%). It has been observed that the higher H2 production (4.62 mol of H2 per mol of EtOH) has been obtained with the use of diluted ethanol and the surplus energy needed could be compensated by the energy save achieved during the purification of ethanol in the production process.
  • 《Low concentration CO2 capture using physical adsorbents: Are metal–organic frameworks becoming the new benchmark materials?》

    • 来源专题:广州能源研究所信息监测
    • 编译者:giecinfo
    • 发布时间:2016-04-13
    • The capture and separation of traces and concentrated CO2 from important commodities such as CH4, H2, O2 and N2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal–organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable material model of metal organic framework as advanced adsorbents with unprecedented properties for CO2 capture in a wide range of CO2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO2 using physical adsorption. This platform shows colossal tuning potential for more efficient separation agents and guide researchers on the crucial criteria to be considered in the development of adsorbents for traces and low concentration CO2 capture.