《美国研究人员实现原子级调控钙钛矿结构》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2024-10-16
  • 美国北卡罗来纳州立大学的研究人员开发出了一项新的材料工程技术,能够在原子水平上调控层状杂化钙钛矿(LHP)的结构。这一技术通过在材料制备过程中添加特定的反溶剂,成功控制了LHP材料内部量子阱的尺寸和方向,形成理想的能量级连,从而提升了材料将电荷转化为光的能力。

    钙钛矿是一类具有特殊晶体结构的钙钛氧化物,广泛应用于光电领域。LHP由薄薄的钙钛矿层由有机物层隔开形成,尽管应用前景广阔,但如何精确控制其结构以提升性能一直是研究中的难题。研究团队发现,材料制备时溶液表面形成的钙钛矿纳米薄层决定了最终LHP材料每层的厚度。这些极薄的LHP层被称为量子阱,通过逐步增加材料层的厚度来形成一个理想的能量级连,能更有效地传递能量。

    这项新技术不仅有望推动下一代发光二极管和激光装置的研发,还可能用于改良其他类型的钙钛矿材料,对开发更高效的太阳能发电设备也具有重要意义。

  • 原文来源:https://www.nengyuanjie.net/article/100119.html
相关报告
  • 《Nature子刊:钙钛矿太阳能电池研究获重要进展!》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-03-11
    • 3月7日,北京大学工学院周欢萍团队与合作者在碱性调控钙钛矿太阳能电池缺陷性质和结晶动力学的研究中取得重要进展,相关工作发表在著名期刊《自然·通讯》。 论文链接:https://www.nature.com/articles/s41467-019-09093-1 有机-无机杂化钙钛矿作为一种新兴的光电半导体材料,因其诸多优异的光电特性和低廉的制造成本,而受到了世界范围内的研究人员的广泛关注。从2009年至今,通过对钙钛矿材料性质、太阳能电池器件结构以及相关界面的不断深入研究,钙钛矿太阳能电池的光电转化效率从3.8%提升到了23.7%。不同于传统的硅材料,有机-无机杂化钙钛矿通常被认为是一种较软的离子晶体,在其多晶薄膜中容易形成各种各样的点缺陷(如空位、间隙离子、反位取代等),它们往往作为非辐射复合中心,影响薄膜的光致发光的量子效率,降低太阳能器件的光伏性能。 近年来,人们一直在努力探索这些缺陷,以揭示其形成和消除的机理。研究发现,缺陷的形成与溶液状态和加工条件息息相关,同时,通过添加合适的添加剂,改变溶液状态,控制薄膜加工条件,可以降低钙钛矿多晶薄膜中缺陷密度,从而提高相应的器件的光电转化效率。然而,目前对于如何大幅度消除各类碘基有机-无机杂化钙钛矿中的深能级缺陷,如间隙碘,还缺少普适可靠的手段。 (a) 弱碱性消除钙钛矿薄膜深能级缺陷示意图。(b) 碱性影响钙钛矿薄膜结晶动力学示意图 针对这一问题,周欢萍课题组及合作者,通过在前驱液中引入碱性物种,促使单质碘杂质在不同的碱性环境下发生歧化反应,有效的抑制和消除了前驱液中的单质碘杂质。同时,碱性的引入进一步地影响了钙钛矿薄膜的结晶动力学和缺陷性质,大幅度提升了相应的钙钛矿光伏器件的开路电压和光电转化效率。该工作深入系统地研究了不同碱性强弱对前驱液中碘单质的歧化反应(碱性介质可使大部分零价碘缺陷还原成碘离子)、成膜过程中黄相黑相的结晶动力学(弱碱性介质有利于光活性相黑相的形成,而强碱性介质则抑制光活性相黑相形成)、钙钛矿薄膜中缺陷态密度的影响。 同时,以乙酸甲脒作为一种“无残留”的弱碱性物质为例,可以有效地调控混卤钙钛矿(FA,MA,Cs)Pb(I,Br)3前驱体中阳离子的化学计量比,同时通过消除前驱液中的碘单质,大幅降低其薄膜中深层缺陷的密度。据此,该课题组成功制备了经美国Newport认证的20.87%效率的混卤钙钛矿太阳能电池,同时,开路电压损失也降低至413 mV,为平面钙钛矿太阳能电池中认证值电压损失最小的器件之一。 太阳能电池光伏性能。(a) PVSK和PVSK-FA器件的电流-电压曲线。(b) 左图:PVSK和PVSK-FA薄膜的吸收和PL光谱;右图:PVSK和PVSK-FA器件开路电压统计直方图。(c) PVSK-FA器件的正反扫。(d) PVSK-FA器件的稳态电流密度和效率。PVSK和PVSK-FA器件的 (e) 瞬态光电压衰减曲线和 (f) 变光强开路电压曲线 该论文的第一作者是周欢萍课题组2016级博士生陈怡华。周欢萍特聘研究员为通讯作者。合作者还包括北京理工大学陈棋课题组、香港科技大学黄勃龙课题组、南京工业大学王建浦课题组、国家纳米中心刘新风课题组、澳门大学邢贵川教授、中国科学院上海高等研究院李东栋研究员等。该工作得到了国家自然科学基金委、科技部、北京市自然科学基金、先进电池材料理论与技术北京市重点实验室等的联合资助。
  • 《北京大学在调控钙钛矿多晶薄膜晶面取向研究取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-09-11
    • 有机无机杂化钙钛矿材料因其可调的带隙、高吸收系数、双极载流子传输性质、长载流子扩散长度和低缺陷态密度等卓越的光电特性掀起了光伏能源领域的研究浪潮。仅仅经历九年的技术发展,多晶钙钛矿薄膜太阳能电池的器件性能已经可以和有着60年研究历史的晶硅电池相媲美,其发展速度远远超过历史上任何一种太阳能电池技术。从2009年至今,世界范围内的研究人员开发了一步旋涂法、两步旋涂法、蒸汽辅助法、刮涂法等多种薄膜制备工艺和溶剂工程、成分工程、界面工程等多项器件优化准则,在提高钙钛矿多晶薄膜质量和器件结构优化设计等宏观尺度上持续推动着太阳能电池向高转化效率迈进。然而目前,对于钙钛矿材料和器件在微观和介观尺度的深度研究仍然较少,材料微结构、载流子输运特性与器件性能间构效关系的机理性认识的缺失直接阻碍器件效率的进一步提升,基于此,探究材料微结构与光伏性能之间的潜在规律将是提高钙钛矿太阳能电池性能的关键一步。     北京大学工学院周欢萍团队利用国家大科学装置中心上海光源的同步辐射X射线掠入射广角散射技术(GIWAXS),系统性研究了当前保持最高效率的混合阳离子体系钙钛矿多晶薄膜的晶面择优取向规律,以此为基础,通过多元阳离子级联的精细掺杂可控地调节了特定晶面相对于基底堆叠排列的方向,得到了更加优异的器件性能。进一步,团队从载流子输运特性层面研究了不同择优取向关系的多晶薄膜与器件性能之间的内在规律,发现平行于基底的(001)晶面族的强择优取向将会促进载流子在薄膜内的高速迁移,提高载流子在钙钛矿与传输层界面处的传输速率和收集效率,特定的晶面堆叠方式与择优取向关系提供了更加高效的载流子输运行为,因此带来了电池器件性能的大幅改善。该研究结果证实了多元阳离子的级联掺杂对多晶薄膜晶面择优取向可控的有效调控,为材料微结构与光伏性能构效关系带来机理性的理解,并为当前电池突破效率瓶颈提供了新的设计思路。该成果以“Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade”为题发表于著名期刊Nature Communications Nature Communications 9, 2793 (2018). DOI: 10.1038/s41467-018-05076-w ,北京大学与上海应用物理研究所联合培养博士生郑官豪杰与北京理工大学博士生朱城为该论文的共同第一作者。北京大学为第一单位。        碱金属阳离子多元级联掺杂的取向演变分析:(a)FAMA, FAMA-Cs, FAMA-CsRb, FAMA-CsRbK级联掺杂多晶薄膜的GIWAXS花样;(b)FAMA, FAMA-Cs, FAMA-CsRb, FAMA-CsRbK级联掺杂多晶薄膜(001)晶面的方位角积分强度图;(c)级联掺杂多晶薄膜晶面取向位向演变示意图   该研究系统调研了碱金属阳离子Cs+、Rb+、K+的多元级联掺杂对于晶体堆叠取向的影响,通过精细的掺杂实现可控的取向调控,揭示了微结构层次的择优取向极大地影响钙钛矿材料的光电特性,证实了平行于基底的(001)晶面族的强择优取向将会促进载流子在薄膜内的高速迁移,提高载流子在钙钛矿与传输层界面处的传输速率和收集效率,建立了清晰明确的钙钛矿多晶微结构、器件性能与载流子输运特性三者之间潜在的构效关系,为当前电池突破效率瓶颈提供了新的设计思路。     该项研究是与北京理工大学陈棋教授、上海应用物理研究所高兴宇研究员、中国科学院化学研究所胡劲松研究员、北京理工大学宇航学院洪家旺教授合作完成的。研究得到国家自然科学基金委、国家重点研发计划、青年相关人才计划等经费支持。