《Nat Chem Bio | 上海药物所揭示过敏毒素识别补体受体系统的分子模式和选择性机理》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-05-12
  •   补体是先天免疫系统的重要组成部分,对于防御微生物感染以及清除免疫复合物和受损细胞至关重要。补体激活过程除了产生攻膜复合物MAC(membrane-attack complex)杀灭病原菌发挥免疫防御之外,同时也产生多种活性物质发挥免疫调节功能,包括被称为过敏毒素的系列碱性肽,例如C3a和C5a。在功能上,过敏毒素既发挥固有免疫防御活性,又同时参与调控获得性免疫中T细胞活性等。
      C3a和C5a是重要的炎症介质,两者虽然在氨基酸序列和结构上相似,但却分别特异性结合并激活细胞膜上不同的G蛋白偶联受体(G-protein coupled receptor, GPCR),C3aR和C5aR(C5aR1/ C5aR2)发挥生理功能。C3aR,C5aR1和C5aR2三种补体受体均属于Class A类GPCR,构成GPCR超家族中的补体受体亚家族。C5aR1(CD88)和C5aR2(C5L2或GPR77)为C5aR的两种亚型,二者均可被C5a以高亲和力结合并激活。C3aR和C5aR广泛分布在中性粒细胞和肥大细胞等免疫细胞中,其中,C3aR 与C5aR1 是典型的GPCR,被过敏毒素激活后通过活化G蛋白Gi/o介导下游信号通路,或者介导非G蛋白依赖的β-arrestin信号传导。作为趋化类GPCR,C5aR1与甲酰肽受体(FPRs)、趋化因子受体、白三烯B4受体(BLTRs)和前列腺素D2受体2 (CRTH2)等GPCR在进化上高度同源,共同构成一个Gi偶联的趋化因子受体亚家族,在固有免疫防御以及炎症发生和消除过程中发挥重要作用。与C3aR和C5aR1不同的是,C5aR2并不表现Gi蛋白偶联和信号活性,对β-arrestin信号存在天然的偏向性。
      C3a轴和C5a轴信号传导构成补体系统免疫的重要组成部分,在炎症反应发生发展过程中扮演重要角色。过去近二十年的研究发现,补体系统的过度激活以及C3a轴和C5a轴信号通路异常与多种严重的急性或慢性炎症疾病的发生发展密切相关,包括败血症、类风湿性关节炎、哮喘和新冠病毒SARS-CoV-2引起的急性呼吸衰竭等。靶向调节C3a-C3aR和C5a-C5aR相互作用进而干预炎症反应的发生与进程展现出对这些疾病的巨大治疗潜力,同时也是科学研究和治疗炎症相关疾病药物开发的热点。2021年,FDA批准了首个靶向C5aR1的选择性抑制剂Avacopan用于抗中性粒细胞胞质自身抗体相关性血管炎。然而,过敏毒素C3a和C5a如何结合并激活其特异性受体介导信号传递的机制长期处于未知状态,严重制约了相关靶向药物发现进程。
      2023年5月11日,中国科学院上海药物研究所徐华强研究员、庄友文副研究员在Nature Chemical Biology发表了最新的研究成果“Revealing the signaling of complement receptors C3aR and C5aR1 by anaphylatoxins”。本研究首先利用冷冻电镜技术方法获得了C3a结合C3aR,无配体结合的C3aR和C5a结合C5aR1分别偶联下游Gi蛋白异源三聚体的高分辨率复合体结构,结合大量突变研究结果,该团队解释了过敏毒素识别补体受体的独特作用机制,由配体结合口袋的拓扑特征介导的选择性机制,以及与趋化因子受体不同的作用模式等科学问题。
      C3a 和C5a分别由77和74个氨基酸构成,且含三对分子内二硫键,该研究团队首先尝试了多种外源表达策略和优化手段,实现了具备高生物活性的重组过敏毒素蛋白分子的异源高表达和有效纯化。C3aR的第二个胞外环ECL2具有172个氨基酸,C3aR和C5aR1分别含有多个酪氨酸磺酸化翻译后修饰,这些结构特征赋予了该受体家族难表达、不稳定的特性。该研究团队前期经过大量摸索,包括标签筛选、组装方式、去垢剂优化等技术手段,最终克服了过敏毒素-补体受体复合物不稳定和冷冻电镜样品难进孔等技术难题,获得了分辨率为2.9-3.2埃的电镜结构。
      研究发现,C3a 和C5a均以羧基端(C端)插入正构结合口袋的方式识别补体受体,这与趋化因子和甲酰肽等其他多肽趋化类炎症介质以氨基端(N端)插入的方式识别受体的模式不同(甲酰肽受体FPRs能模式化识别含甲酰化甲硫氨酸标记的甲酰肽,参与固有免疫防御和活性调节。研究团队前期报道了甲酰肽受体FPR1和FPR2在甲酰肽和其他多肽炎症分子等激活下的系列结构,揭示了FPRs识别甲酰肽等的保守分子模式和潜在的激活机理等1,2)。结构表明,C3a和C5a的C末端loop区均以“Hook”构象将之锚定到受体的正性结合口袋,并且构成与受体互作的主要界面。该团队通过结构分析,将C3a和C3aR的结合分为两个部分,分别为正性结合口袋和胞外结合域,即“两位点模型”。然而,C5a在此基础上多了与C5aR1的N末端的相互作用,即“三位点模型”,更类似于趋化因子与趋化因子受体的识别模式。C5a与C5aR1的N末端的直接相互作用促使了整个C5a的α螺旋核心区域相对于C3a在C3aR的结合模式偏转了约84°。相比之下,C5a在C5aR1的结合口袋大小比C3a在C3aR中的高出了447 埃3。
      C3a和C5a的C端序列,尤其是C末端的精氨酸,对于两者激活各自受体至关重要3,4。该研究结合大量受体和配体的突变功能实验结果,发现C3a 和C5a的C末端精氨酸的侧链插入到补体受体TM6/7附近保守的带负电结合口袋,与受体的D7.35形成静电作用,并与Y6.51形成阳离子-π相互作用,这对补体受体的识别和激活至关重要。通过C3a和C5a的C末端氨基酸互换,发现C3a的C末端对完全激活C3aR具有不可替代性,而C5a的C末端替换为C3a相应的氨基酸(长度为5个氨基酸),依然可以完全激活C5aR1,将替换长度增加为10个氨基酸,则减弱1000倍的亲和力,揭示了C5aR1的胞外端对识别C5a极为关键。这些结果共同阐述了过敏毒素C3a 和C5a保守的分子识别模式,以及各自的受体选择性拓扑结构决定因素,为靶向补体受体C3aR和C5aR1的药物研发提供了结构和功能基础,同时,完善并深化了科学家对补体系统信号传导分子机制的认识。
      本项研究中的冷冻电镜数据由中国科学院上海高峰电镜中心收集。上海药物所2018级博士生王悦、2019级硕士毕业生刘卫一为该论文的共同第一作者,庄友文副研究员和徐华强研究员为共同通讯作者,中国科学院上海药物所为第一完成单位。该工作获得了包括国家自然科学基金委、科技部重大专项、上海市市级科技重大专项、中国科学院特别助理研究项目、上海市自然科学基金面上项目、上海市启明星项目扬帆专项和中国科学院青促会等基金的资助。
    全文链接:https://www.nature.com/articles/s41589-023-01339-w

    参考文献:
    1.Zhuang, Y. et al. Structure of formylpeptide receptor 2-Gi complex reveals insights into ligand recognition and signaling. Nature communications 11, 885, doi:10.1038/s41467-020-14728-9 (2020).
    2.Zhuang, Y. et al. Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2. Nature communications 13, 1054, doi:10.1038/s41467-022-28586-0 (2022).
    3.Wilken, H.-C., Gotze, O., Werfel, T. & Zwirner, J. C3a (desArg) does not bind to and signal through the human C3a receptor. Immunology letters 67, 141-145 (1999).
    4.Cain, S. A. & Monk, P. N. The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). The Journal of biological chemistry 277, 7165-7169, doi:10.1074/jbc.C100714200 (2002).

  • 原文来源:http://www.simm.ac.cn/web/xwzx/kydt/202305/t20230512_6753316.html
相关报告
  • 《Nat Commun | 上海药物所合作揭示内皮素受体多肽识别选择性的分子机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-03-09
    •   内皮素(Endothelin,ET)是一类由21个氨基酸组成的内源性多肽激素,包括ET-1,-2和-3三种亚型,由氨基段、羧基端和中部的α螺旋区组成(图1a)。ET-1是已知最强且作用最为持久的血管收缩肽之一。ETs通过作用于内皮素受体(ETRs)调节人体多种重要的生理和病理过程。ETRs由ETAR和ETBR两种亚型组成,属于典型的A类G蛋白偶联受体。在被ET-1激活后,ETAR和ETBR呈现相反的血管调节作用:ETAR激活导致长时间的血管收缩效应,而ETBR则介导血管扩张。内皮素系统对于维持血管稳态中发挥着重要作用,与多种器官系统的血管疾病密切相关,是治疗心血管系统疾病的重要靶标之一。   ETs对两种ETRs亚型表现出不同的亲和力,其中ETAR对ET-1和ET-2表现出相当级别的亲和力(亚纳摩尔),但对ET-3的亲和力弱100倍,而三种ETs对ETBR 的亲和力相同。IRL1620是一种ETs多肽类似物,但其序列不含ETs的氨基段,可以高选择性地激活ETBR(图1b),目前在临床研究中被应用于缺血性脑卒中、癌症的辅助治疗等。目前尚无针对ETAR亚型的结构研究,因此多肽识别ETAR的机制,以及两种ETRs亚型对不同内源多肽和多肽类药物的精确选择性机制尚不明确,这也是内皮素及其受体研究领域的重要科学问题之一。   2023年3月7日,中国科学院上海药物研究所徐华强团队联合临港实验室蒋轶研究员、中国科学院上海药物研究所/中山药物创新研究院段佳研究员共同在Nature Communications发表了最新的研究成果“Structural basis of peptide recognition and activation of endothelin receptors”。本研究利用冷冻电镜技术解析了内源性配体ET-1结合于ETAR/ETBR-Gq复合物的结构,选择性激动剂IRL1620结合于ETBR-Gi复合物的结构,分辨率分别为3.0埃,3.5埃和3.0埃(图1c-e)。   该研究展示了ETRs激活的构象特征,表明ETRs对ET-1/-2/-3保守的识别机制。ETs的羧基末端插入ETRs的配体结合口袋对ET-1所诱导的ETRs激活至关重要。ETs的羧基末位残基W21与“Toggle switch”残基W6.48的直接相互作用触发了家族性ETRs的激活。科研人员进一步从结构的视角对ETRs的配体选择性进行了阐述,提出两种受体亚型在结合口袋大小和受体胞外表面的静电电势的差异决定了配体对ETRs多肽的识别选择性。该研究成果在分子层面上揭示了ETRs与配体相互作用的机制,加深了对ETRs的激活以及对配体的选择性的理解,为设计靶向特定ETRs亚型的药物奠定了结构基础。   本研究中的冷冻电镜数据由上海药物所高峰电镜中心收集。上海药物研究所硕士研究生纪语婕、段佳研究员、袁青宁为该论文的共同第一作者。徐华强研究员、蒋轶研究员、段佳研究员为共同通讯作者。该项工作获得了国家自然科学基金委、科技部重点研发计划、上海市科技重大专项等项目的资助。   全文链接:https://www.nature.com/articles/s41467-023-36998-9
  • 《Nat Commun | 上海药物所徐华强课题组合作破解甲酰肽受体模式化识别甲酰肽的保守机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-03-05
    • 甲酰肽是一类在氨基末端(N末端)具有甲酰化甲硫氨酸的多肽分子,是一种普遍存在的病原相关分子模式(PAMP)或损伤相关分子模式(DAMP)。甲酰肽受体 (FPRs)家族作为一类模式识别相关G蛋白偶联受体 (GPCR),能够特异性识别来源于入侵病原体或宿主受损线粒体中的甲酰肽,在人体固有免疫中扮演重要角色。FPRs由三个成员组成,包括FPR1、FPR2(也称为FPRL1)和FPR3,这些受体主要分布于中性粒细胞、嗜酸性粒细胞、巨噬细胞和树突状细胞等免疫细胞中,被甲酰肽激活后,一方面诱导中性粒细胞、肥大细胞等激活,释放炎症细胞因子,促使炎症发生;同时,作为趋化物招募巨噬细胞等快速富集,引起活性氧的产生消灭病原微生物,并对病原体以及受损组织进行吞噬清除,在免疫防御和调节过程起重要作用。FPRs与趋化因子受体、过敏毒素受体(C5aR1),类二十烷脂质分子白三烯B4和前列腺素D2(BLT和CRTH2)受体一起构成Gi偶联的趋化因子受体家族,分属于A类GPCR的γ分支,主要通过偶联G蛋白家族中的Gi/o异源三聚体介导信号传递。   FPR1和FPR2在氨基酸序列上高度相似,然而,两者显示出不同的甲酰肽偏好性。FPR1倾向于高亲和力结合短甲酰肽,例如典型的甲酰肽fMLF (N-formyl-Met-Leu-Phe),而FPR2偏向结合较长的肽或具有特定序列的肽,例如酚溶性调节蛋白α(PSMα),一种金黄色葡萄球菌产生的甲酰肽毒素。大量研究发现,FPR1和FPR2,尤其是FPR2,表现出明显的配体杂乱性,除了能够模式化识别广泛来源的甲酰化多肽配体外,还可以识别一系列结构和功能不一样的非甲酰化蛋白或脂质配体,包括血清淀粉样蛋白A (SAA)、HIV病毒来源多肽、鼠疫病原体耶尔森氏菌的致病毒素、β淀粉样蛋白以及脂质配体LXA4和Resolving D1等,表现出促进炎症或抗炎效应。开发偏向性激活FPR2消炎信号通路的激动剂药物是目前靶向哮喘、阿尔兹海默症以及心脑血管疾病等药物研究领域的热点和前沿。   前期,上海药物所徐华强课题组通过冷冻电镜技术解析并报道了首个甲酰肽受体FPR2结合多肽配体WKYMVm的近原子分辨率结构,结合多种实验方法揭示了FPR2的配体正性结合口袋特性以及配体识别多样性的可能结构因素(庞大的配体结合口袋以及构象活跃的胞外结构域),阐释了FPRs受体家族识别甲酰肽的潜在的保守识别模式。为进一步确证FPRs识别甲酰肽的保守机制以及配体结合多样性分子机制,科研团队与美国匹兹堡大学张诚课题组合作,解析了甲酰肽fMLFII激活下FPR1-Gi和FPR2-Gi信号复合物,以及抗炎多肽CGEN-855A和化合物Compound 43结合FPR2-Gi复合物的冷冻电镜结构(2.9埃 - 3.2埃),并结合细胞水平功能分析揭示了甲酰肽识别并激活FPRs的保守模式,阐述了FPR1和FPR2结合不同长度甲酰肽的选择性决定因素等,为深入了解甲酰肽受体家族的配体识别和激活机理以及靶向FPRs理性药物设计提供了重要的结构基础和理论依据。研究论文“Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2”于2月25日在线发表于国际知名期刊Nature communications。 研究发现,甲酰肽fMLFII以N端朝口袋内部的方式结合到FPR1和FPR2上,与科研人员前期用计算机模拟得出的结论一致。结构比对发现,fMLFII在FPR1和FPR2中的结合模式高度相似,其N末端的甲酰基与FPR1/FPR2配体结合口袋内部保守的氨基酸残基D3.33, R5.38 和R5.42形成极性相互作用网络,这三个保守的氨基酸充当“钳子”的作用,将甲硫氨酸侧链以正确的构象定位到口袋底部由保守氨基酸W6.48 、P5.50、F6.44以及V3.40形成的狭窄的激活腔中,引起腔内氨基酸构象变化,进而激活FPRs,这表明FPR1/FPR2通过保守的模式识别甲酰肽。值得注意的是,保守激活腔内的氨基酸W6.48 、P5.50、F6.44以及V3.40是Class A 类GPCRs激活的关键基序。通过比较WKYMVm, 甲酰肽fMLFII, CGEN-885A以及Compound 43四种不同配体结合的FPR2结构发现,虽然这些配体在FPR2正性结合口袋的结合模式各异,但是三种多肽配体的C端/N端甲硫氨酸侧链以及Compound 43的氯苯基在保守激活腔中构象高度重合,并且均与保守氨基酸D3.33, R5.38 和R5.42形成极性相互作用网络,表明不同FPRs配体与甲酰肽配体共享上述相似的受体激活分子机制。  FPR1和FPR2对不同的甲酰肽具有结合的偏好性,研究结果表明,FPR1上的非保守氨基酸Y2576.51和F1023.29与甲酰肽形成更多的相互作用,相比于FPR2,FPR1的近胞外端结构更为狭窄,在空间上限制了长链甲酰肽与其结合,这些因素共同决定了FPR1偏好性识别短链甲酰肽而FPR2倾向于结合长链甲酰肽。   上海药物所副研究员庄友文、美国匹兹堡大学博士后Lei Wang为该论文的共同第一作者,上海药物所为第一单位。徐华强研究员、张诚教授为共同通讯作者。参加这项研究的还有上海药物所研究生郭嘉、王悦和刘卫一,以及匹兹堡大学博士后孙大鹏,其中,郭嘉在冷冻电镜样品制备和数据处理过程中做出了重要的贡献。此项工作得到了美国国立卫生研究院、科技部重点研发计划项目、中国科学院先导计划、上海市科技重大专项以及中国科学院特别研究助理项目经费支持。   文章链接:https://www.nature.com/articles/s41467-022-28586-0#Sec17   关联文章:https://www.nature.com/articles/s41467-020-14728-9