《上海应用技术大学等提出催化剂制备新理念》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2018-01-31
  • (记者黄辛)上海应用技术大学教授韩生和清华大学教授魏永革课题组合作,共同提出“无机配体配位/支撑金属催化剂”这一全新概念,其催化剂制备理念避免了传统催化剂的缺陷,或有望开启催化剂工业制备和应用的“绿色时代”。近日,相关研究发表于《德国应用化学》。

    目前,全世界90%以上的化学生产过程都离不开催化。传统的“金属络合物催化剂”理念存在制备复杂昂贵、周期长、污染大等问题,这些缺点都阻碍了其大规模工业化应用。

    研究人员利用具有优良电子转移能力的金属氧化物作为无机配体,与金属络合配位,在过渡金属周围形成电子蓄水池,通过均相催化等手段控制电子的转移,从而控制化学反应的选择性和活性。此催化剂理念源于魏永革教授20多年对无机配合物结构的研究。

    目前,两校联合课题组已成功开发出具有2000多种绿色催化剂的催化剂库。课题组与一家高新上市企业进行产学研合作,利用催化剂库中的一种绿色催化剂成功进行了旧产品的绿色氧化工艺升级改造,打破了60年来美国传统催化剂对这一技术的垄断。

相关报告
  • 《新型催化剂 助力高效绿色制备氨气》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-01-20
    • 氨是世界上最重要的基础化学品之一,在现代工农业生产中具有广泛用途。但传统的合成氨工艺需要在高温高压条件下进行反应,能耗高且造成大量温室气体排放。目前,能够在常温常压下实现氨合成的电催化合成氨技术,被公认为是一种绿色节能的高效碳减排技术。其中,设计制备高活性和稳定性的电催化剂是该技术实用化的关键。 近日,南京工业大学吴宇平教授课题组联合武汉理工大学的赵焱教授课题组最新研究证明,新型单原子催化剂“钼单原子负载的二维磷化硼催化剂”是一种很有前途的电催化合成氨催化剂,有望大幅提高制氨的产率,减少物料和能量的浪费。相关成果发表于《能源与环境材料》上。 目前,在全球低碳经济和我国可持续发展战略理念的影响下,开发新型绿色合成氨技术替代传统合成氨工艺是当今的研究热点之一。其中,电催化还原氮气合成氨技术具有独特的优势,被公认为是一种能够在常温常压下实现氨合成的绿色节能高效技术。 “电催化合成氨技术实用化的关键,是要设计制备出高活性和高稳定性的电催化剂。为了筛选出这样的催化剂,我们用缺陷二维磷化硼(BP)作为载体材料,然后将12种过渡金属单原子分别负载于BP上,从中筛选出新型单原子合成氨催化剂。”吴宇平介绍,团队通过研究筛选发现,钼单原子负载的二维磷化硼催化剂材料,不仅具有高效的氮气活化还原合成氨能力,同时在抑制析氢竞争反应等方面性能同样突出。 “合成氨本质上是一种还原反应。氮气分子在常温常压下具有一定的惰性,钼单原子负载的二维磷化硼催化剂材料可以使其活化,从而促进还原反应过程;并且这种催化剂还能减少反应过程中氢气的释放,抑制析氢竞争反应。”论文第一作者、南京工业大学博士研究生刘再春解释,相关研究证明,新催化剂对发展高效碳减排合成氨技术具有重要意义。
  • 《活性催化膜制备及其应用研究取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-03-22
    • 平衡反应是自然界中的常见现象,它限制了化学反应在给定温度、压力、浓度、配比等条件下的最大转化率,在有机化学反应如酯化、硝化、缩酮、酰化等化学工业中的重要反应中尤为常见。同时,这类反应还多存在产物或原料的热稳定性差、副反应多、连串反应等问题。因此,如何有效地提高这类反应的产率并进而提高其原料利用率、减轻后续分离过程的能耗是困扰有机化工生产的一个重要难题。ISPR(In-Situ Product Removal)技术,即产物原位分离技术,是解决这一难题的有效方式之一。 其中,渗透汽化催化膜反应器(Pervaporation membrane reactor, PVMR)以渗透汽化(Pervaporation, PV)膜分离为基础,将PV膜组件与催化反应过程相耦合,通过PVMR打破反应热力学平衡的限制,从而获得更高的反应转化率。但在传统催化膜反应器中,PV膜本身多显示出催化惰性(Catalytically inert,图1b),只具有分离性能。催化剂一般分散于料液主体中进行催化反应,产物通过分离膜进行移除。其存在传质路径多,扩散阻力大,传质推动力小等固有缺陷(图1a)。 为解决这些问题,北京化工大学膜分离过程与技术北京市重点实验室的张卫东、卿伟华团队,针对传统PVMR中液相主体扩散是其关键控制步骤的问题,提出通过制备具有疏松多孔催化层和致密分离层的复合结构活性催化膜(Catalytically active membrane, 图2a),将催化反应从料液主体迁移到膜的表面,在消除传统PVMR中主体扩散阻力的同时,降低由反应物向催化位点扩散阻力,实现反应分离耦合过程的强化。该研究团队成功将固体酸催化剂,通过相转化法有效固定在PV膜表面,形成了具有“三明治”式复合结构的活性催化膜(图1c,d),以酯化反应为探针,系统考察了活性催化膜的反应-分离耦合强化效果。团队通过合理匹配反应和分离两个关键速率,使得产物在活性催化膜内生成后,直接通过膜的分离作用移除出反应器(消除向料液主体的反向扩散),实现了真正意义上的产物原位分离(Genuine In-situ Product Removal)(图2a,b),进一步强化了热力学平衡向产物方向的移动,产物转化率达到了100%(图2c)。相关研究成果发表在化工顶级期刊Chemical Engineering Journal上。第一作者为卿伟华博士,通讯作者为张卫东教授。 该工作不但极大拓展了PVMR的应用范围,而且通过系统研究各组分在PVMR及膜内传质规律,阐明了活性催化膜的强化机理。对开发和设计活性催化膜及其反应器,特别是微小尺度及高空速条件下新型催化膜反应器具有重要的指导和应用价值。