《我科学家显著提高水稻基因组编辑效率》

  • 来源专题:转基因生物新品种培育
  • 编译者: Zhao
  • 发布时间:2017-06-19
  • 6月12日,中国水稻研究所王克剑课题组和中国科学院遗传与发育生物学研究所李家洋课题组合作开展的研究结果在线发表于《植物生物技术杂志(Plant Biotechnology Journal)》上。该研究显著提高了CRISPR-Cas9-VQR系统在水稻中的基因组编辑效率。

    CRISPR-Cas9系统已经广泛应用于基因组编辑。但是该系统在进行基因组编辑时,除需要特异识别靶序列之外,还需要特异识别一段NGG的邻近核苷酸序列,这大大限制了该系统的编辑位点选择范围。在前期的研究中,课题组通过对Cas9蛋白进行定点突变,获得了Cas9蛋白的VQR变体,并在水稻基因组中成功实现对NGA邻近序列的编辑,极大的扩展了基因编辑位点的选择范围,然而CRISPR-Cas9-VQR系统与原CRISPR-Cas9系统相比较,其编辑效率依然偏低,这限制了该系统在水稻中的推广应用,为此,该研究通过优化sgRNA的结构以及使用水稻内源性强启动子来驱动VQR变体的表达,成功将CRISPR-Cas9-VQR系统的编辑效率提高到了原有系统的3至7倍。

    该研究得到了国家自然科学基金、中国农科院科技创新工程经费的资助。水稻所硕士研究生胡熙璕和中国科学院遗传所助理研究员孟祥兵为该论文的共同第一作者,中国科学院遗传所李家洋研究员和水稻所王克剑研究员为共同通讯作者。

  • 原文来源:http://www.caas.cn/xwzx/kyjz/283344.html
相关报告
  • 《我科学家创出水稻基因组定点编辑新办法》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-01-14
    • 据中国农科院最新消息,该院植物保护研究所作物有害生物功能基因组研究创新团队,首次将ScCas9蛋白应用于水稻细胞基因位点识别和定点编辑,证实在水稻中有较高的编辑效率,可识别PAM序列NNG基因位点,扩宽了植物基因编辑应用范围。相关研究成果在线发表于《植物生物技术(Plant Biotechnology Journal)》。   中国农科院植保所研究员周焕斌介绍,CRISPR/Cas9系统已成为基因组精准修饰的有效工具,促进了植物功能基因组学研究和作物分子育种进程。但是Cas蛋白仅识别特定的PAM序列,极大的局限了基因编辑,尤其是碱基编辑靶点的选择性。利用Cas蛋白突变体和不同物种Cas蛋白等在一定程度上可扩宽CRISPR工具的打靶范围。扩展Cas9的识别区域是当前对CRISPR/Cas9系统优化改良的重要方向。   该研究选用来源于狗链球菌的ScCas9蛋白对水稻基因组编辑技术进行升级和扩宽编辑范围。试验证实,ScCas9蛋白在水稻中可通过识别NNG位点完成基因编辑,且对NAG位点表现最好,编辑效率优于与之相似(相似度89.2%)的传统SpCas9蛋白,但对NGG、NCG和NTG的编辑效率则具有一定的位点依赖性。此外,ScCas9蛋白还可同时高效地完成多基因编辑和双靶碱基定点替换,编辑效率高达36.96%和47.5%。ScCas9在水稻基因组定点编辑上的应用,扩宽了基因组编辑的范围,为后续基因组编辑衍生技术提供了更多的可选择工具,也为植物基因功能研究和作物分子育种与遗传改良提供了有力的技术支撑。
  • 《科学家利用基因编辑转座子改良水稻性状》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2024-10-29
    •     转座子(TEs)是真核生物基因组中广泛存在的DNA重复序列,约占水稻基因组的35%。转座子是植物产生遗传变异的重要来源,通过多种机制调控基因表达及表型变异。水稻的泛转座子变异图谱研究表明,转座子在水稻驯化和育种性状改良方面发挥重要作用。     近日,中国科学院院士、遗传与发育生物学研究所研究员李家洋带领的科研团队,联合崖州湾国家实验室的研究人员,在《植物生物技术杂志》(Plant Biotechnology Journal)上在线发表了题为Generation of OsGRF4 and OsSNAC1 alleles for improving rice agronomic traits by CRISPR/Cas9-mediated manipulation of transposable elements的研究论文。该研究通过对水稻基因OsGRF4或OsSNAC1的非编码区进行转座子编辑,实现了对目的基因表达的精确调控。同时,该研究创制的优良等位基因为作物遗传育种提供了新策略。     微型反向重复转座子(MITEs)是短小而非自主的DNA转座子,是水稻基因组中数量较多的转座元件,且与至少58%的水稻基因相关。研究表明,MITEs是水稻基因表达变异的主要驱动因素之一,而利用MITE插入多态性进行全基因组关联研究有助于挖掘并控制农艺性状的潜在基因。 该研究推测,通过CRISPR/Cas9基因编辑技术设计基因非编码区的MITEs转座子分布可以上调或下调目标基因的表达,从而创制新的基因等位基因型以改良水稻性状。为验证这一设想,科研人员选择水稻中的生长调节因子4基因OsGRF4和胁迫响应基因OsSNAC1进行研究。研究显示,OsGRF4可正向调控水稻产量的相关性状,在其终止密码子下游的1200bp内插入一个294-bp的PIF/Harbinger超家族MITE;OsSNAC1可以增强水稻的耐盐性,但在其上下游非翻译区未检测到MITE。研究发现,水稻某些基因下游非编码区中的MITE可以介导靶基因的翻译抑制。因此,研究认为,通过CRISPR/Cas9技术删除OsGRF4下游非翻译区中的MITE,可以创制出过表达的等位基因型。研究针对OsGRF4基因的MITE靶区域,设计构建了2个CRISPR/Cas9 sgRNAs,并对其进行编辑。科研人员对得到的无转基因的纯合突变体进行分析发现,OsGRF4基因的MITE删除,提高了OsGRF4mite突变体中靶蛋白的丰度,并改善了与产量相关的农艺现状。水稻基因上游非翻译区中的一些MITEs可作为增强子,如miniature Ping (mPing) TE可以增强盐胁迫响应基因的转录水平。因此,研究人员尝试将430-bp的mPing插入耐盐基因OsSNAC1的上游非翻译区。进而,科研人员剖析得到的纯合突变体发现,OsSNAC1基因的MITE插入,提升了盐胁迫下OsSNAC1MITE突变体中靶基因的转录水平,并增强了它的耐盐性。上述成果为转座子驱动的作物遗传育种提供了新途径。研究工作得到科技创新2030-重大项目、国家自然科学基金及海南省相关项目的支持。