《中国海洋大学在紫色光合细菌RC-LH1超分子复合物结构与功能研究中取得新进展》

  • 来源专题:深海资源开发
  • 编译者: 徐冰烨
  • 发布时间:2024-10-14
  • 近日,中国海洋大学海洋生命学院、海洋生物多样性与进化教yu部重点实验室、深海圈层与地球系统前沿科学中心张玉忠教授团队,与英国利物浦大学、中国海洋大学绿卡教授刘鲁宁教授及华中农业大学高军教授合作,在Science Advances发表题为“Architectures of photosynthetic RC-LH1 supercomplexes from Rhodobacter blasticus”的研究论文。刘鲁宁教授、张玉忠教授和高军教授为该论文的共同通讯作者,王鹏副教授、英国利物浦大学的Bern Christianson和荷兰赛默飞公司电子显微镜卓越中心的Deniz Ugurlar博士为并列第一作者。中国海洋大学是该论文的第一完成单位和通讯作者单位。


    光合作用是植物、藻类和许多微生物将太阳能转化为化学能的关键过程,为地球上的大多数生命提供能量。光合厌氧紫细菌是地球上最早出现的生命之一,也是研究细菌光合作用的理想模式生物。在紫细菌中,光反应首先发生在光化学反应中心(Reaction Center,RC)和捕光复合物1(Light-harvesting complex 1,LH1)形成的超分子光合膜蛋白元件RC-LH1 中。RC-LH1由多个αβ-异二聚体组成的LH1天线环绕在RC周围,LH1将激发光能传递给RC,随后发生光诱导的电荷分离反应,产生的电子再通过RC-LH1结合的醌分子向下游传递,驱动化学能转化。紫色光合细菌的RC复合物是第一个被晶体解析的的膜蛋白结构,并获得1988年诺贝尔化学奖。尽管RC-LH1在光合反应中的功能具有一定的保守性,但在不同光营养细菌中,其组装及结构差异显著。


    为深入探究紫色光合细菌的结构差异及其在光捕获和电子传递中的优化策略,本研究选择了典型的生芽红细菌(Rhodobacter blasticus)作为研究对象,其具有能够产生二聚体RC-LH1复合体的能力。通过冷冻电镜技术,研究解析了该菌株中两种RC-LH1复合物的高分辨率结构,首次揭示了其在光合作用中的结构特点。研究发现,Rba. blasticus的RC-LH1复合物有单体和二聚体两种组装形式(图1)。RC-LH1单体由一个光反应中心(RC)和一个开放的LH1环组成,该环包含15个αβ异二聚体亚基,形成了一个不完全闭合的环状结构,缺口由跨膜多肽PufX填充。RC-LH1二聚体则由两个RC-LH1单体组合而成,在其二聚化界面处,两个PufX亚基相互交叉,促成了二聚体的形成。与模式光合紫色细菌类球红细菌Rhodobacter sphaeroides相比,Rba. blasticus RC-LH1二聚体作用界面和相互作用存在较大差异,导致其形成了更扁平的二聚体构象。且生芽红细菌Rba. blasticus RC-LH1二聚体相比类球红细菌Rba. sphaeroides多包含两个LH1复合体,并且缺少PufY亚基。这些特异的结构特征导致生芽红细菌RC–LH1二聚体形成相对封闭的“S形”LH1环。

  • 原文来源:http://cmls.ouc.edu.cn/2024/1014/c12143a486287/page.htm
相关报告
  • 《应用蓝细菌模式菌株研究光合膜天然结构取得重要进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2020-07-23
    • 光合作用是地球上最重要的生物能量转化过程之一,通过光合膜上光合复合物(光系统1 PSI、光系统2 PSII、细胞色素b6f复合体Cytb6f、ATP合成酶等)间的电子传递将光能转化为化学能。长期以来,人们对光合复合物的结构和功能进行了大量研究,获得了多种光合复合物单独的原子结构,对它们的功能也有了较深入的理解。然而,我们对这些复合物在天然类囊体膜上的结构状态及协作关系知之甚少,它们之间如何通过动态协作实现能量的传递及调控目前尚不清楚。 海洋试点国家实验室海洋生物学与生物技术功能实验室张玉忠教授团队同英国利物浦大学刘鲁宁教授团队等合作,利用高分辨率原子力显微镜技术,以蓝细菌模式菌株Synechococcus elongatus PCC 7942为研究材料,对其光合膜——类囊体膜进行了高分辨率成像,在纳米水平上展示了类囊体膜上光合复合物的天然结构及相互结合方式,并解释了类囊体膜结构和功能的光适应调节机制。 研究发现,高光下蓝细菌Synechococcus elongatus PCC 7942的类囊体膜上大量表达和组装叶绿素结合蛋白IsiA,并与PSI结合形成IsiA−PSI超分子复合物。与单颗粒电镜分析得到的相对均质的结构不同,原子力显微镜技术展示了天然类囊体膜上IsiA-PSI超分子复合物的结构多样性。PSI三聚体、二聚体、单体能够与IsiA单环、双环、三环或者多环结合,表明IsiA与PSI之间的相互结合具有很大的灵活性。 首次观察到了PSI的腔面结构特征,而且能够有效的分辨类囊体膜上PSI、PSII及Cytb6f复合物结构,准确地获取它们在膜上的空间分布信息。该研究观察到了PSII二聚体的平行成列排布,周围的PSI与PSII二聚体的之间的空间关系比较紧密,暗示了天然类囊体膜上可能存在PSII−PSI超分子复合物。PSII及Cytb6f二聚体穿插于PSI复合物中间,它们之间近距离相互作用形成了PSII−Cytb6f−PSI结构簇,有助于加快光合作用线性电子传递。通过进一步分析发现,PSI复合物与Cytb6f复合物之间存在多种不同的结合方式。 研究还发现PSI与NAD(P)H脱氢酶复合体NDH-1以及ATP合成酶之间也存在紧密的相互作用,而且它们之间的空间结合方式也具有多样性。PSI与其他复合物间的相互合作是实现并优化光合作用线性电子传递、环式电子传递以及光能吸收转化的结构基础。 对近生理状态下的蓝细菌类囊体膜结构的认知不仅可以加深我们对蓝细菌、真核藻类以及高等植物的光合装置的生理功能及环境适应的理解,并为利用合成生物学制造高效的人工光合膜和光能生物转化系统等研究提供重要的理论基础。 该项研究成果刊载于2020年7月13日Nature Plants(《自然-植物》)杂志 。论文由海洋试点国家实验室、山东大学、英国利物浦大学、中国海洋大学、英国玛丽女王学院和河南大学等单位相关学者合作完成,该研究得到了国家自然科学基金重点项目、科技部重点研发计划等项目的资助。 相关论文信息:Nature Plants, 2020, 6: 869–882. DOI: 10.1038/s41477-020-0694-3。 https://www.nature.com/articles/s41477-020-0694-3
  • 《微生物所合作在古菌病毒结构研究中取得新进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-07-30
    • 上世纪七十年代,美国科学家Woese等提出了三域学说,将地球上的生命分为三种形式(或域),即细菌、古菌和真核生物。古菌常见于高温热泉、盐碱湖、厌氧等极端环境。1984年,德国人Zillig等首次从热泉古菌中分离到了病毒,该病毒形态为此前从未见过的纺锤形(60×100nm),宿主是极端嗜酸嗜热古菌─硫化叶菌(Sulfolobus)。这些纺锤形病毒(Sulfolobus spindle-shaped virus,SSV)属于微小纺锤形病毒科,几乎存在于世界各地的所有高温硫泉中,至今已分离得到20多个病毒株(SSV1~22)。纺锤形是古菌病毒的常见形态,在海洋、盐湖、酸性矿山、极地水体等许多自然环境都已发现。除了形状奇特,纺锤形病毒基因组中约3/4的基因功能未知,这些病毒的衣壳形态构建规则、极端环境适应机制、生活史、与宿主之间的相互作用、起源与进化等成为研究热点。 黄力研究团队致力于研究纺锤形病毒和其他古菌病毒,先后发现了包括四株微小纺锤形病毒(SSV19~22)在内的多个新的古菌病毒,并深入探讨了微小纺锤形病毒的感染过程及关键步骤。解析微小纺锤形病毒结构对于理解病毒组装方式、入侵机制和核酸释放等过程非常重要,但是由于此类病毒衣壳通常柔性较大,先前获得的冷冻电镜结构的分辨率都很低,难以看清微小纺锤形病毒的真实面貌。 黄力团队与湖南师范大学刘红荣、程凌鹏团队合作,利用近期分离的SSV19,获得了近原子分辨率的病毒颗粒尾部结构。研究发现,SSV19的主要衣壳蛋白(major capsid protein)VP1构成七股螺旋,左手盘绕,组成整个病毒衣壳,病毒颗粒的尾部由七次对称的喷嘴蛋白(nozzle protein)C131、连接蛋白(adaptor protein)B210和尾刺蛋白(tailspike protein)VP4组成。七次旋转对称的病毒衣壳结构属首次发现。在尾部和衣壳之间发现了脂质分子,解开了此类病毒脂质定位之谜。 他们还发现尾刺蛋白含有与细菌甘露聚糖水解酶活性部位相似的结构域,提示该病毒可能通过识别、甚至水解细胞表面的糖链进入宿主细胞。有意思的是,VP1与一种古菌杆状病毒的主要衣壳蛋白结构高度相似,说明纺锤形和杆状病毒衣壳有着共同的结构基础;此外,SSV19的喷嘴蛋白与疱疹病毒和细菌噬菌体的相应蛋白在结构上相似,提示这些感染古菌、真核生物和细菌的病毒可能具有共同祖先。 本研究的结果有助于揭示微小纺锤形病毒颗粒组装、宿主识别与进入、病毒DNA释放等环节的分子细节,增加对古菌病毒及其演化规律的认识。 上述工作已于2022年7月27日在线发表于《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America,PNAS)。黄力研究员、湖南师范大学刘红荣教授、程凌鹏副教授为该论文的共同通讯作者。湖南师范大学硕士生韩阵、中国科学院微生物研究所博士生袁琬娟为并列第一作者。该研究得到了国家自然科学基金、湖南省自然科学基金创新群体项目等的资助。 论文链接:https://www.pnas.org/doi/full/10.1073/pnas.2119439119