《前沿 | 光子芯片上的量子压缩光源保护》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-02-18
  • 量子压缩光源是量子传感和量子信息处理的关键资源。非线性晶体中的参量频率转换是量子光学中获取非经典光和产生多光子纠缠态不可或缺的方法。由于晶体固有的光学非线性和有限的相互作用体积的限制,通常需要相当大的泵浦功率来获得有效的非线性相互作用从而产生压缩光,但是这往往也会导致非预期的效果,如对非线性材料的损坏。

    近年来,飞秒激光直写技术因设计灵活、无掩模等特点脱颖而出,加工出的波导结构可以将光场严格束缚在波导内,同时保证紧致聚焦条件和足够的相互作用体积,显著增加了非线性相互作用的强度。

    一般来说,为了构建能够操控多光子的大规模量子系统,必须将各种不同功能模块集成到一块芯片上,然而,受波导制造缺陷以及倏逝波耦合效应的影响,不同基于波导的功能模块之间会发生传输串扰。这种串扰不仅改变了光源所发射光子的量子态,还降低了产生效率等性能。

    拓扑相可以保护物理场免受无序干扰,这种效应是近期对各种非线性光学过程拓扑保护研究的核心,其中也包括光子对产生。然而,尽管量子压缩光源在量子光学中具有重要意义,上述研究多聚焦于较低光子数的情况,而没有进行关于强压缩光拓扑保护的探索。

    近日,上海交通大学集成量子信息技术研究中心主任金贤敏教授领导的课题组提出了一种拓扑保护片上量子压缩光源的方法,将拓扑保护理论与高效的飞秒激光直写技术结合,通过加工特定的拓扑结构构造拓扑相来完成对片上量子压缩光源的性能和演化的保护。相关研究成果已发表于 Photonics Research 2022年第2期,并被遴选为编辑推荐(Editors’ Pick)亮点文章。

    研究团队在熔融石英上加工出类似于Su Schrieffer Heeger (SSH)晶格的二聚型光源波导阵列,在理论和实验上探索了对压缩光的拓扑保护。在理论上计算了不同拓扑端口处的能带图和局域态密度,并模拟出了泵浦光在不同演化距离下的演化结果。

    该团队在实验上演示了拓扑保护的四波混频非线性过程,在二氧化硅基芯片上高效产生压缩光。同时研究者测量了不同拓扑结构在不同演化距离下的互关联函数和压缩系数以证明对强压缩态的拓扑保护。

    研究结果表明,这种拓扑保护对非经典态的波长变化具有鲁棒性,受到拓扑保护的光场同时满足紧聚焦和足够的相互作用体积,有助于在复杂的光子线路中构建高质量的量子压缩器。

    此项研究成果为推动更大规模和更高保真度的全片上量子处理器开辟了新的途径,通过结合拓扑保护理论和飞秒激光直写技术,大规模的可重构多功能模块可以不受串扰地集成在同一芯片上,并用于未来的实际量子信息任务,如高斯玻色子采样和玻色子纠错编码。芯片上量子压缩光源拓扑保护技术的应用为大规模光量子集成领域带来了新的机遇。

相关报告
  • 《前沿 | 用于光子芯片的激光打印机》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-02-05
    • 华盛顿大学研究团队发明了一种新的方法来打印和重写光子集成电路(微芯片),这些复杂的微芯片有可能大幅降低成本,提高电子设备在广泛应用领域的速度和效率,包括汽车技术、通信、医疗保健、数据存储和人工智能计算。该研究以“Freeform direct-write and rewritable photonic integrated circuits in phase-change thin films”为题发表在《Science Advances》上。 具有快速原型设计和重新编程能力的光子集成电路(PIC)有望对大量光子技术产生革命性影响。研究报告了在低损耗相变材料(PCM)薄膜上直写和可重写的光子电路。完整的端到端PIC可在一个步骤中直接用激光写入,无需额外的制造工艺,而且电路的任何部分都可以擦除和重写,便于快速修改设计。 研究展示了这一技术在各种应用中的多功能性,包括用于可重构网络的光互连结构、用于光计算的光子横杆阵列以及用于光信号处理的可调谐光滤波器。通过将激光直写技术的可编程性与PCM相结合,该技术为可编程光子网络、计算和信号处理带来了机遇。此外,可重写光子电路还能以方便、经济的方式实现快速原型开发和测试,无需纳米制造设备,从而促进光子学研究和教育向更广阔的领域推广。 图 1.由华盛顿大学电气与计算机工程和物理学教授Mo Li领导的一个研究小组发明了一种新的方法来打印和重新配置光子集成电路(微芯片),使用的是一种快速、低成本的设备,大小与传统的台式激光打印机差不多。这种装置可以使学生和研究人员避免昂贵的纳米制造设施,几乎在任何地方生产光子集成电路。这项技术也有可能在工业上应用 图 2. 直写和可重写相变光子集成电路 图 3. 直写光子元件及其特征 图 4. 可编程光子开关阵列和横杆阵列 图 5. 分步形成光学滤波器的光谱响应 提高性能,打造商用设备 该团队开发的方法已被证明有效,但它仍然是一个早期阶段的概念。不过,研究人员正在计划制造一种用于光子集成电路的台式激光打印机。这种打印机可以合理价格出售,并广泛分销给世界各地的研究实验室和教育机构。研究团队还在与行业领导者接触,以促进这一新技术在可编程光子芯片和可重构光网络中的可能应用。 这种用于光子芯片的激光打印机将使用一个分级系统,以比传统桌面打印机更精确的方式移动基板。 该团队在制作原型机时,将设法优化其性能。他们还将通过对材料科学和激光写入技术的进一步研究,努力减少所使用相变材料的光学损耗。这将使打印机能够打印出比目前更精细、更复杂的电路。
  • 《前沿 | 使用异质集成的高性能硅光子学》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-01-25
    • 美国加州大学圣巴巴拉分校的研究人员综述了采用异质集成的高性能硅光子学最新进展,重点介绍了超低损耗波导、单波长激光器、梳状激光器和光子集成电路,包括用于激光雷达的光学相控阵和用于数据中心互连的光收发器。相关研究发表在《IEEE Journal of Selected Topics in Quantum Electronics》上。 在过去的五十年中,大多数电信、数据通信和传感器系统都依赖于单独的光学组件,例如激光器、调制器和光电探测器。最近,集成光子学由于其在尺寸、重量、成本和功耗方面的优势已经商业化。光子集成电路 (PIC) 的性能很大程度上取决于所采用的集成平台。硅光子学利用已经相当成熟的 CMOS 设备来量产低成本的光子元件,同时具有低损耗和紧凑波导等特性,比基于 III-V 的器件具有内在优势。硅光子调制器、光电探测器和无源器件可通过基于单片绝缘体上硅 (SOI) 波导结构进行制造。异质集成技术是一个关键的推动者,它不仅提供了原生Si衬底上不存在的光学增益,而且能够在芯片上实现完整的光子功能,也为多功能集成光子器件性能工程奠定了基础。 这里,研究人员介绍了异质硅光子器件和集成电路的最新进展。高设备性能和高集成度使其在通信、互连和传感器领域的应用得以实现和扩展。异构集成的关键指标是接近或超过单片集成或者混合集成。优化后的有源和无源的异构集,为性能优于离散光学元件的全新设备开辟了新的机会。窄线宽激光器就是证明这种优越性的一个典型例子。对于单片激光器,线宽增强因子 αH 是决定因素,因此,量子点激光器可以实现比量子阱激光器更窄的线宽。混合集成和异构集成,利用分别优化的有源和无源器件,可以实现超窄线宽。在这种情况下,超低损耗 SiN 无源波导占据了最佳性能。基于扩展光栅的外腔、环形谐振器的外腔和具有超高 Q 值的自注入锁定在内的多种方法,都提供了不同的激光操作和对比的激光线宽缩减率。现设计的优化非均匀III-V/Si宽可调谐激光器线宽已经比使用大型外腔的商用外腔二极管激光器(ECDLs)有着更好的表现。与混合集成类似,集成的超高 Q SiN 环形谐振器有望进一步降低激光噪声。异质集成硅光子已经在包括可见光、中-红外(中红外)的各领域发挥着重要的作用。 总体而言,异质集成硅光子电路的商业化正在迅速发展,与电子设备的紧密集成是下一代高带宽数据中心网络交换机的关键推动力。可靠、窄线宽和高通道数的异质激光源很可能在下一阶段发挥关键作用,这是异质集成硅光子相对于其他平台的一个显着优势。