《Cell | 酵母中tRNA新染色体的设计、构建和功能表征》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-11-11
  • 本文内容转载自“iNature”微信公众号。原文链接: https://mp.weixin.qq.com/s/m_t_d1a1XM8s3vgz689ing

    2023年11月8日,英国曼彻斯特大学的蔡毅之团队在Cell 发表了题为Design, construction, and functional characterization of a tRNA neochromosome in yeast的研究论文,该研究报道了tRNA新染色体的设计、构建和表征,这是一种真核生物体内从零开始人工设计的全新染色体(neochromosome)。

    作为Sc2.0项目的核心设计之一,这条190 kb的tRNA全新染色体容纳了所有275个重新定位的核tRNA基因。为了最大限度地提高其稳定性,设计融入了来自其他真核生物物种的遗传元件。此外,283个rox重组位点的存在使tRNA随机重组(SCRaMbLE)系统成为可能。此外,该研究还进一步通过tRNA测序、转录组学、蛋白质组学、核小体图谱、复制谱、FISH和Hi-C等技术揭示了tRNA新染色体的行为和功能。它的构建证明了酵母模型的可追溯性,并为揭示相关非编码RNA提供了方法。该系统为系统地探索tRNA遗传学,以及tRNA和染色体相互作用提供了一个全新技术平台。

  • 原文来源:https://www.sciencedirect.com/science/article/pii/S0092867423011303
相关报告
  • 《科学家发现简化人类人工染色体构建的新方法》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-07-29
    • 在过去的20年中,科学家们一直在努力完善人类人工染色体(human artificial chromosome, HAC)的构建。在一项新的研究中,来自美国宾夕法尼亚大学的研究人员通过绕过形成天然染色体所需的生物学要求,描述了一种形成HAC的一个重要部分---着丝粒---的新方法。简言之,他们通过生化手段将一种称为CENP-A的蛋白直接运送到HAC DNA上,从而简化实验室中的HAC构建。相关研究结果发表在2019年7月25日的Cell期刊上,论文标题为“Human Artificial Chromosomes that Bypass Centromeric DNA”。 论文通讯作者、宾夕法尼亚大学佩雷尔曼医学院生物化学与生物物理学教授Ben Black博士说道,“我们取得的进展简化了HAC的构建和表征,从而有助于人工制造全人类染色体。” HAC基本上作为新的微型染色体发挥作用,携带着一组经过改造的基因,它们可与细胞的天然染色体组一起遗传。生物工程师设想HAC执行各种任务,包括递送用于基因治疗的大分子蛋白,或者运输自杀基因来抵抗癌症。 论文第一作者Glennis Logsdon说道,“想象我们构建的HAC是模型大小的染色体。通过能够以一种更直接的方式构建出HAC上的着丝粒,我们更接近于扩大到全尺寸的染色体。” 在分裂过程中从来自母体细胞的HAC遗传到子细胞中是关键,这说明了着丝粒的重要性。着丝粒是在细胞发生分裂时将成对的“姐妹”染色体保持在一起的重复染色体的压缩区域。若没有它,整个染色体在细胞分裂期间会丢失。 在细胞复制期间,人着丝粒并非简单地由DNA序列编码,这一点不同于多年来用于合成染色体研究的面包酵母。比如,哺乳动物依赖于CENP-A蛋白来指定染色体上的着丝粒位置,以便进行精确的细胞分裂。 之前在试管中形成HAC着丝粒的尝试仅在它们“遇到”CENP-A时才会发生,而且这种不太可能发生的事件仅发生在HAC基因组的高度重复DNA序列上。Black说,“然而,高度重复DNA是分子生物学家的噩梦,这是因为利用我们如今拥有的方法研究它们是最为困难的,这是因为这些方法都是针对非重复DNA设计的。” Black团队通过将CENP-A直接运送给HAC DNA而完全绕过了重复DNA。他们的解决方法涉及“迫使”CENP-A与非重复DNA序列结合,以便形成HAC的新着丝粒。 Black说道,“我们采用了我们的着丝粒绕过方法,从而制造出功能齐全的HAC,而且不会遭受过去二十年来重复着丝粒DNA给哺乳动物染色体工程师带来的克隆噩梦。基于我们的成功,我们和合成染色体领域的其他人如今将有机会获得迄今为止仅在酵母细胞中取得的成就。” 这个合成生物学领域的下一步是将Black实验室构建的着丝粒与其他人设计的一组基因连接在一起。这个循序渐进的构建项目是人类基因组编写计划(Human Genome Project—Write, HGP-write)的目标:构建真实尺寸的合成染色体。Black团队的贡献将有助于加速构建基于合成染色体的有用的研究工具和临床工具。
  • 《Cell | 调试和巩固多个合成染色体揭示组合遗传相互作用》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-11-13
    • 本文内容转载自“欣贝莱生物”微信公众号。原文链接: https://mp.weixin.qq.com/s/jWeLCw5KvYBe2SGCFb6VSg 2023年11月8日,Sc2.0项目领导者纽约大学Jef D. Boeke教授团队在期刊Cell发表了题为Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions的研究论文,宣布已成功合成酿酒酵母的全部16条染色体(编号为synI到synXVI),并分别创建了16种包含不同合成染色体组合的单倍体酵母菌株,即每个酵母拥有15条天然染色体和1条人工合成的染色体。该成果标志着Sc2.0在人造真核生物生命体研究上的又一里程碑,下一步挑战则是将全部合成染色体组合在一起形成一个全人工的新细胞。 研究利用”内重复交叉“巩固合成染色体,本质上是利用了自然界中的遗传重组规律,即将上述含有单个不同合成染色体的酵母细胞进行杂交,然后在后代中筛选出遗传了两条合成染色体的酵母。经重复交叉获得了含有6.5个人工合成染色体的酵母菌株,他们将该酵母称为syn6.5,其中0.5为synIX号染色体的右臂。在这一过程中,研究团队还利用CRISPR定向双等位基因URA3辅助基因组扫描,以精准定位合成染色体上由特定设计修饰引起的“缺陷”(被称之为bug)。最后,为了加快整合,研究团队采用了染色体替换的方法将最大的一条染色体(synIV)整合进syn6.5细胞中,从而获得了基因组中包含超过50%的人造基因的酵母细胞,称为syn7.5。与Sc2.0项目的其他合成染色体相比,tRNA新染色体在酵母基因组中没有天然的对应模板,因此它是一个完全新设计和构建的人造染色体。