《探索 | MIT开发新电极提高CO?转乙烯效率》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: 胡思思
  • 发布时间:2024-11-25
  • 随着全球努力减少温室气体排放,研究人员正在寻找实用且经济的方法,将二氧化碳捕获并转化为有用的产品,例如交通燃料、化学原料,甚至建筑材料。然而,到目前为止,这些尝试尚未达到经济可行性。

    MIT 工程师的一项新研究可能为正在开发中的多种电化学系统带来快速改进,这些系统旨在将二氧化碳转化为有价值的商品。研究团队开发了一种新型电极设计,提高了转化过程的效率。

    这项研究成果近期发表在 Nature Communications 上,由 MIT 博士生 Simon

    Rufer、机械工程教授 Kripa Varanasi 以及其他三名研究人员共同撰写。

    Varanasi 表示:“二氧化碳问题是我们这一时代的重大挑战,我们正在利用各种手段解决这一问题。”

    他强调,找到从发电厂排放物、空气或海洋中去除二氧化碳的实用方法至关重要。然而,一旦二氧化碳被去除,还必须找到处理这些气体的方式。

    Varanasi 指出,目前已经开发出各种系统,可以将捕获的二氧化碳转化为有用的化学产品。“我们不是不能做到这一点——我们可以做到。但问题是,如何使其高效?如何使其具备成本效益?”

    在这项新研究中,团队专注于将二氧化碳通过电化学转化为乙烯,这是一种广泛使用的化学物质,可用来生产各种塑料以及燃料。目前,乙烯主要由石油生产。然而,研究人员表示,他们开发的方法同样适用于生产其他高价值化学产品,例如甲烷、甲醇、一氧化碳等。

    目前,乙烯的售价约为每吨 1000 美元,因此目标是实现能够与这一价格竞争的生产方式。将二氧化碳转化为乙烯的电化学过程涉及一种基于水的溶液和催化剂材料,它们在一种称为气体扩散电极的设备中与电流接触。

    气体扩散电极材料的性能受到两个竞争性特性的影响:它们必须是良好的导电体,以防止驱动过程的电流因电阻发热而浪费;同时,它们必须具有“疏水性”,即防止基于水的电解质溶液泄漏并干扰电极表面的反应。

    遗憾的是,这是一种权衡:提高导电性会降低疏水性,反之亦然。Varanasi 和他的团队试图找到解决这一冲突的方法,经过数月的努力,他们成功实现了这一目标。

    由 Rufer 和 Varanasi 设计的解决方案以其简单而优雅著称。他们使用了一种塑料材料 PTFE(本质上是特氟龙),这种材料以良好的疏水性能而闻名。然而,由于 PTFE 缺乏导电性,电子必须通过非常薄的催化剂层传递,这会随着距离显著增加电压损失。为克服这一限制,研究人员将一系列导电铜线编织进 PTFE 的超薄片材中。

    “这项工作真正解决了这一挑战,因为我们现在可以同时实现导电性和疏水性。”Varanasi 表示。

    碳转化系统的研究通常是在非常小的实验室规模样本上进行的,通常尺寸小于 1 英寸的方块。为了展示扩展的潜力,Varanasi 的团队制作了一张面积大 10 倍的片材,并证明了其有效性能。

    为实现这一目标,他们进行了之前从未完成的基础测试,在相同条件下使用不同尺寸的电极进行测试,以分析导电性与电极尺寸之间的关系。他们发现,导电性随着尺寸的增大显著下降,这意味着驱动反应需要更多能量,从而增加成本。

    “这是我们预料之中的结果,但之前并没有人专门研究过这一点。”Rufer 说。此外,更大的尺寸会产生更多的副产物,而非预期的乙烯。

    实际工业应用需要的电极可能比实验室版本大 100 倍,因此增加导电线将是使这些系统实用化的必要条件。研究人员还开发了一个模型,捕捉了由于欧姆损耗导致的电极电压和产物分布的空间变化。这个模型结合他们收集的实验数据,使他们能够计算出导电线的最佳间距,以抵消导电性下降。

    通过将铜线编织进材料中,该材料被划分为由线间距决定的较小子区域。“我们将其分成许多小的子段,每个子段实际上是一个更小的电极。”Rufer 解释道。“正如我们所看到的,小电极可以很好地工作。”

    由于铜线的导电性远高于 PTFE 材料,它充当了电子通过的“高速公路”,连接了电子被限制在基底中且阻力较大的区域。

    为证明其系统的稳健性,研究人员连续运行了测试电极 75 小时,性能几乎没有变化。总体而言,Rufer 表示,他们的系统是第一个基于 PTFE 的电极,在 5 厘米或更小的实验室规模之外实现了扩展,并且没有牺牲效率。

    他补充说,铜线的编织过程可以轻松融入现有制造流程,甚至在大规模卷对卷工艺中也能实现。

    “我们的方法非常强大,因为它与实际使用的催化剂无关。”Rufer 说,“你可以将这些微米级铜线缝入任何您想要的气体扩散电极中,无论催化剂的形态或化学性质。因此,这种方法可以用于扩展任何人的电极。”

    “考虑到我们每年需要处理数十亿吨二氧化碳来应对这一挑战,我们确实需要思考能够扩展的解决方案。”Varanasi 表示。“从这一思路出发,我们能够识别关键瓶颈并开发创新方法,从而在解决问题方面产生重要影响。我们的分级导电电极就是这种思维方式的产物。”

  • 原文来源:https://news.mit.edu/2024/mit-engineers-make-converting-co2-into-products-more-practical-1113
相关报告
  • 《探索 | MIT设计出新的量子纠缠原子钟 推动计时精度的极限》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-12-18
    • 原子钟是我们今天所拥有的最准确的计时工具,最精准的原子钟150亿年的误差不超过一秒。但总是有改进的空间,麻省理工学院(MIT)的研究人员现在已经用一种新的量子纠缠原子钟证明了这一点。 原子以如此精确可靠的模式振动,以至于你可以根据它们来设置手表--这正是原子钟的作用。这些时计使用激光来测量这些振荡,得出的时间精确到足以制定国家和国际标准。例如,铯133的共振频率为9,192,631,770Hz,而且非常稳定,自1968年以来,这种模式已正式定义了秒。 现在,麻省理工学院的一个物理学家团队设计出了一种新型的原子钟,它可以进一步推动精度的极限。理想情况下,跟踪单个原子的振动应该能最精确地保持时间,但不幸的是,随机的量子波动会使测量结果混乱。这就是所谓的标准量子极限。 因此,量子钟通常会追踪一种由数千个相同类型的原子组成的气体--传统上是铯,尽管近年来镱正在成为新的领跑者。这些原子几乎被冷却到绝对零度,然后用激光器固定在原地,同时另一个激光器测量它们的振荡。通过取许多原子的平均值,可以得出更准确的答案。 不幸的是,标准量子极限的影响可能会减少,但不能完全消除。麻省理工学院团队的新原子钟进一步降低了影响,这要归功于量子纠缠。这听起来不可能,但在某些情况下,原子可以变得如此纠缠,以至于测量其中一个原子的状态可以瞬间改变其伴侣的状态--无论它们相隔多远。这就是所谓的量子纠缠,新的时钟利用这种现象实现了更高精度的计时。 研究人员从大约350个镱-171原子开始,这种原子的振荡速度甚至比铯还要快。这些原子被困在两个镜子之间的光腔中,然后用激光照射到光腔中,使原子发生量子纠缠。 “这就像光作为原子之间的沟通纽带,”该研究的共同作者Chi Shu说。“第一个原子看到这道光,会稍微修改一下光,这道光也会修改第二个原子,第三个原子,通过许多循环,原子们共同认识对方,并开始表现得相似。” 一旦原子被纠缠在一起,第二道激光就会照射到云层中,测量它们的平均频率。研究小组发现,这种方法创建的时钟可以达到特定的精度,比使用非纠缠原子的类似时钟快四倍。 研究人员表示,这种方法可以使原子钟变得如此精确,以至于在整个宇宙时代之后,它们仍然会有不到100毫秒的不同步。另外,它们还可以帮助科学家研究一些物理学中最大的未解问题,比如暗物质、引力波,以及物理学规则是否会随着时间而改变。 “随着宇宙的老化,光速是否会发生变化?”该研究的共同作者Vladan Vuletic说。"电子的电荷是否会发生变化?这是你可以用更精确的原子钟来探究的。" 信息来源:cnBeta 推荐阅读 战略 | 发改委等四部门:加快在光刻胶、高纯靶材等领域实现突破 突破 | 黑硅光电探测器创纪录:外部量子效率高达132% 新品 | 小米量产全球首款透明电视 突破 | 中芯国际14nm芯片已量产,良率正在稳步爬升 探索 | 新西兰将试验世界上第一个长距离无线电力传输系统 重磅 | 2020年度国家科技奖初评结果出炉!(光电相关部分) 前瞻 | 传华为要自研光刻机? 突破 | 我国科学家成功开发新型5nm高精度激光光刻加工方法,实现1/55衍射极限突破 洞见 | 清华大学魏少军:摩尔定律驱动集成电路集成电路,全球半导体时隔7年首次出现衰退 重磅 | 大族激光:研发光刻机 新品 | 1.2万亿晶体管40万颗核心:巨无霸芯片成功卖出 前沿 | 首个纯国产dToF SPAD激光雷达传感器芯片 突破 | 华为发布突破性5G天线技术 突破 | 国产ArF光刻胶取得重大突破:可用于7nm工艺 探索 | 我学者制成金属钠薄膜,将助推等离激元器件研发 突发 | 33家中企被美列入“实体清单”,国产替代刻不容缓! 战略 | 2家中国半导体初创企业获英特尔投资 突破 | 安芯半导体再出货一台近千万光刻机,国产化之路为时不远 前沿 | 基于量子中继的量子通信网络技术取得重大突破 新品 | 一种新型的无焦平面镜头相机 干货 | 国内光电领域相关学会协会基础信息整理 新品 | 欧洲研究组开发了一种1kW点矩阵超快激光器 新品 | 激光物理学:光波的脉冲 探索 | NIST提出了光功率的新定义 前沿 | 全球首款100寸8K GOA显示面板在成都点亮 干货 | 光电机构知多少?中国科学院光电相关科研机构汇总整理(下) 干货 | 光电机构知多少?中国科学院光电相关科研机构汇总整理(上) ○ 关注我们从扫码开始 ○ 光电咨询合作:027-87199007 商业报告服务:027-87199372
  • 《探索 | Iontronic器件的未来:离子激光诱导石墨烯电极》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-02-27
    • 离子电子学领域的进步,特别是在离子电子器件电极的开发方面,最近取得了重大飞跃。已经开发了一种使用CO2激光辐照在聚酰亚胺离子凝胶上直接合成离子激光诱导石墨烯电极的新方法,有望以其卓越的石墨烯质量、最小的缺陷和更高的结晶度彻底改变该领域。这种创新技术不仅增强了PI离子凝胶的离子传输特性,而且还提供了稳定的界面形成和高EDL电容。 正如发布在《自然》杂志上的一项研究所报道的那样,研究人员已经成功地制定了一种方法,使用CO2激光照射在基于聚酰亚胺的离子凝胶上直接制造高导电性、适形的激光诱导石墨烯电极。该技术产生具有增强结晶度和扩展多孔结构的高质量石墨烯,从而降低界面电阻并增加 EDL 电容。本研究中的PI离子凝胶在电极界面处表现出特殊的双电层形成,这一特性主要归因于高效的离子迁移。当离子液体浓度被调制时,这种改进的离子传输特性导致了由EDL电容驱动的高性能离子电子器件。 在聚酰亚胺离子凝胶上直接合成离子激光诱导的石墨烯电极不仅阐明了制造高质量石墨烯的新方法;它还为其在各种技术设备中的应用开辟了一个充满可能性的世界。正如都灵理工大学的一份出版物所指出的那样,这种创新方法在柔性电子、储能和可穿戴设备方面具有潜在的应用。该过程涉及将聚酰亚胺离子凝胶转化为激光诱导的石墨烯,其表现出优异的导电性和机械柔韧性。这种机械、结构和电化学的多功能性表明了对低电压、高性能离子电子器件未来的重大影响。 利用CO2激光辐照在聚酰亚胺离子凝胶上生产离子激光诱导石墨烯电极的创新方法在离子电子学领域取得了突破性进展。它能够以最小的缺陷和更高的结晶度生产高质量的石墨烯,再加上它在各种技术设备中的潜在应用,推动我们更接近低电压、高性能离子电子器件司空见惯的未来。随着研究的不断完善和推进,我们可以预期离子传输特性和EDL电容的进一步增强,从而促进更高效和多功能的离子电子器件的开发。