medRxiv预印版于3月16日发表了清华大学等发表的论文“Rational evaluation of various epidemic models based on the COVID-19 data of China”。该文以2020年春季全国7个省市公开发布的COVID-19数据为基础,对文献中广泛使用的8个经验函数、4种统计推断方法和5个动态模型的预测能力进行了系统研究。强调了在模型的复杂性和准确性、过拟合和欠拟合以及模型的鲁棒性和敏感性之间取得良好平衡的重要性。研究人员进一步引入Akaike信息准则、均方根误差和稳健性指数来量化这三种黄金方法,并对各种流行模型/方法进行评价。通过大量的仿真,发现拐点在预测中对数据集大小的选择起着至关重要的作用。在拐点之前,这里所考虑的模型都不能做出可靠的预测。研究人员进一步注意到Logistic函数稳定地低估了最终的流行规模,而Gomertz函数在所有情况下都做了高估。由于序贯贝叶斯方法和随时间改变的再生数随疫情发展的非恒定性,因此研究人员建议特别在流行病的晚期使用它们。对于拐点,指数增长方法从低估到高估的过渡行为可能对构建更可靠的预测有用。对于基于ODE的动力学模型,SEIR-QD和SEIR-PO模型在COVID-19流行病上通常表现出比SIR、SEIR和SEIR-AHQ模型更好的性能。
*注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用。