《gcType:用于微生物系统发育和功能研究的高品质模式菌株基因组数据库》

  • 来源专题:转基因生物新品种培育
  • 编译者: 王晶静
  • 发布时间:2020-11-26
  • 微生物的分类和功能研究越来越依赖于基于基因组的数据和方法。全球模式微生物基因组数据库(Global Catalogue of Type Strain,gcType)作为“全球微生物菌种目录(Global Catalogue of microbial, GCM)10K原核型菌株测序项目”的保藏库,已公布了由GCM 10K项目测序的1049个模式菌株基因组序列,保存在全球保藏库中,并保持有效发表状态。此外,通过gcType提供的信息包括来自GenBank的超过12000个公开的模式菌株基因组序列,采用质量控制标准和标准数据注释管道进行整合,形成高质量的参考数据库。该数据库整合了模式菌株序列及其表型信息,便于表型和基因型分析。跨基因组搜索和交互界面的多种格式允许对数据库资源进行广泛的探索。在本研究中,我们描述了基于网络的数据分析管道,用于基因组分析和基于基因组的分类,可以作为一个一站式的平台鉴定原核生物物种。随着GCM 10K项目与世界各地的保藏库的合作,已发表的模式菌株基因组数量将继续增加。本项目数据与国际核苷酸序列数据库合作共享。可从http://gctype.wdcm.org/免费访问gcType。

相关报告
  • 《欲望的微生物学:微生物的世界观-合生菌》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-12-17
    • 在2001年出版的《植物学的欲望:植物的世界观》一书中,作者迈克尔•波伦挑战了传统的以人类为中心的世界观,并鼓励读者从植物的角度来看待生命。是人类还是植物在发号施令?也许我们不是为了生存而控制植物,而是植物为了生存而控制我们。普兰强调了几种植物是如何满足人类的基本需求的。纵观历史,我们一直在有选择地培育不同的作物,以获得某些特性,并将它们传播到世界各地,似乎是为了我们的利益。这些农作物包括苹果(用于制造甜味)、郁金香(用于制造美感)、大麻(用于麻醉)等等。 同样,微生物也在与人类共同进化,在数百万年的时间里形成了一种共生关系。事实上,每个人都被数万亿的微生物所占据。我们吃的食物喂养了生活在我们肠道内的有益微生物,作为回报,它们战胜了病原微生物,产生了调节我们免疫系统的代谢物。此外,数千年来,微生物一直在帮助人类进行一种最古老的食品加工方法——发酵,即微生物将食物从一种形式转化为另一种形式。在20世纪后期,我们开始通过工业发酵——类似于酿造啤酒的过程——来改造微生物来生产药物,如胰岛素和其他成分。从那时起,我们就利用这项技术在农业、能源、食品和医疗保健行业进行大量应用。 今天,我们正在加速与这些可爱的小生物的合作。我们正在设计和发展它们,喂养和种植它们,保护和传播它们到世界各地。问题是,我们做这些工作是为了我们的利益还是为了他们的利益?也许发号施令的不是人类或植物,而是微生物。 改造和进化微生物 随着基因组测序和云计算等技术的成本在过去几年里呈指数级下降,科学家们一直在加大对微生物的研究,围绕微生物的功能及其与其他有机体的相互作用出现了一些新发现。工业界正利用这项研究进行各种商业应用,例如利用微生物作为小型工厂来生产不含动物的蛋白质、健康的农作物和药物。作为这一运动的一部分,三家初创公司——enEvolv (Cultivian portfolio company)、银杏生物工程公司(Ginkgo Bioworks)和Zymergen——总共筹集了超过15亿美元的风险资本,为其中的一些应用程序设计和进化微生物。利用新一代DNA测序和机器学习等工具,这些革新者极大地增加了有用微生物的数量和多样性,并且与以前的技术相比,大大减少了为我们的利益而将基于生物的产品商业化所需的时间和成本。 喂养和培养微生物 科技风险投资家马克•安德森(Marc Andreessen)在2011年发表的文章《软件正在吞噬世界》(Software is Eating the World)中,展示了软件公司是如何接管世界上一些最大的行业的。如今,随着微生物发酵成为蛋白质、药物和其他产品的关键生产过程,微生物似乎正在吞噬这个世界(有时确实如此)。 为了设计这些过程中的微生物,我们利用硅模型和计算机代码(0和1)来修改微生物的遗传代码(A、C、T和G),从而设计出某些能滋养我们的菌株,在某种程度上,还能设计出其他能产生滋养它们的糖的菌株。根据一些估计,到2024年,益生菌(滋养我们的活微生物)和益生元(滋养它们的糖)市场预计将分别达到770亿美元和70亿美元。由于预期需求将不断增长,近年来微生物群落领域的风险投资出现了爆炸性增长。 几家初创公司正在利用微生物及其衍生产品进行商业应用。这些用例有助于证明存在于人类和微生物之间的共生关系。我们设计和进化微生物,然后喂养和培养它们;作为回报,他们生产的产品使我们受益。我们与微生物的关系也开启了新的价值主张,减少了我们对自然世界的依赖,比如需要收获动物来获取食物、药品和其他产品。例如,Geltor (Cultivian portfolio公司)是通过发酵生产无动物蛋白领域的新兴领导者。该公司最初的重点是胶原蛋白,历史上只能从动物皮肤、骨骼和结缔组织中提取。Geltor最近宣布了与GELITA的重大合作,将在2020年推出世界上第一个无动物胶原蛋白。 保护和传播微生物 就像Pollan在他2001年的书中所强调的各种各样的植物一样,人类一直在世界各地保护和传播微生物,表面上是为了满足我们的需要。最近,消费者对减少或消除食品供应链中的抗生素和杀虫剂的偏好开始改变农业。其结果是,对生物制品需求的增加和对生物制品的采用正在保护我们作物、牲畜和肠道中的有益微生物。事实上,像Eligo生物科学公司,叶形科学和一般益生菌工程微生物选择性地破坏致病微生物,同时保持有益微生物完整代替广谱抗生素消灭有益和致病微生物,有点像“我们会让你活着如果你做同样的为我们“交换条件。 此外,我们一直在世界各地传播有益微生物。当某些微生物在发达国家证明对人类有用时,盖茨基金会正在投资并与风险投资支持的初创公司合作,例如AgBiome(用于作物健康)和evolution BioSystems(用于婴儿营养),以便在发展中国家部署这些微生物产品。
  • 《Science | 综述宿主调控微生物组》

    • 编译者:李康音
    • 发布时间:2024-07-30
    • 2024年7月19日,牛津大学Kevin R. Foster通讯在Science发表题为Host control of the microbiome: Mechanisms, evolution, and disease的文章,讨论了宿主调控其微生物群的机制。 多细胞生物与其相关微生物群之间的复杂关系长期以来一直被认为是维持健康的关键因素。微生物组由微生物群和宿主因子组成,在宿主生理的各个方面如免疫、营养和认知功能发挥着关键作用。以慢性竞争和快速进化为特征的微生物群的动态性质对宿主构成了重大挑战。为了应对这些挑战,宿主已经进化出一套控制机制,使他们能够塑造和操纵自己的微生物群,以最大限度地提高效益,同时最大限度地减少危害。 宿主控制特征包括影响微生物群的各种机制。这些包括免疫、屏障功能、生理稳态、转运和宿主行为。免疫,特别是脊椎动物的免疫系统,是已知的最复杂的宿主控制机制。它涉及天然免疫和适应性免疫,其中适应性免疫使宿主能够产生新的受体来识别和应对特定的微生物株。植物和动物共有的天然免疫利用模式识别受体来检测常见的微生物特征,从而驱动重塑微生物组并维持正常宿主-微生物组关系的反应。适应性免疫仅在有颌脊椎动物中发现,能学习并改变激活其受体的化学配体,从而对特定的微生物威胁做出量身定制的反应。 屏障功能是主机控制的另一个关键方面。屏障限制了微生物的定植和生长,有些屏障,如哺乳动物皮肤,完全阻断了通道,而另一些屏障,如粘膜上皮,则起到了选择性屏障的作用,限制了转运,但允许化学交换。粘液(mucus)是动物的特征,是容纳微生物群并实现气体交换的保护层。粘液还充当微生物的食物来源和附着位点,宿主可以利用它来塑造微生物群的组成。生理稳态在宿主控制中起着重要作用。宿主可以定义共生菌可以栖息的生态位,不同部位选择不同的微生物群。氧气控制在某些微生物组中尤为重要,促进了共生菌对复杂碳水化合物和其他底物的发酵。总肠道形态的进化也在生理控制中发挥作用,食草动物进化出了复杂的厌氧肠道,使植物材料能够发酵。 迁移(transit),即对微生物组的运动,是另一种宿主控制机制。平滑肌能够实现强有力的、有规律的蠕动收缩,这可以迅速清除导致疾病的共生菌。宿主行为也会影响微生物组。避免变质的食物可以降低摄入病原体的可能性,而对某些口味的偏好可以帮助宿主摄入有益的共生菌。此外,亲属之间特殊共生体的垂直传播也有助于稳定微生物群。 宿主控制机制以多种方式影响微生物组,可以改变存在的共生菌(partner choice,“伴侣选择”)或改变存在的寄生体的表型(partner manipulation ,“伴侣操纵”)。宿主可以通过调节宿主发育过程中的微生物组组装过程来影响共生菌的迁移,还可以通过限制问题共生菌的资源或为有益共生菌提供资源来影响已建立微生物的丰度。宿主可以直接影响驻留共生菌的行为,以增加它们从中获得的益处。最后,宿主可以塑造共生菌之间的相互作用,促进竞争,从而选择为宿主提供益处的生长旺盛的细菌。 共生进化和对抗适应(counteradaptation)对宿主来说是一把双刃剑。如果微生物的快速进化能够为微生物组内的有益性状产生自然选择,那么它就可以成为宿主控制的机会。然而,如果共生体进化使共生体能够逃避宿主的控制,也可能是一个问题。宿主控制机制通常针对微生物表型而不是基因型来限制反进化(counterevolution)。尽管如此,一些共生菌进化出了绕过宿主控制机制的方法,为宿主控制在共生菌进化中的作用提供了令人信服的证据。 疫苗接种提供了一种针对肠道微生物组中特定细菌的潜在策略。通过恢复肠道中的厌氧环境或调节关键营养素来增强宿主对共生体代谢的控制也可能是有益的。特别是随着年龄的增长,我们的微生物组变得更加多变和容易患病,促进健康粘液层和宿主上皮屏障完整性的策略具有明显的潜在健康益处。 总之,宿主控制机制是由自然选择形成的,以应对微生物组固有的(注意是inherent不是innate或inborn)多样性和可变性。了解这些机制对于理解微生物组和操纵它们以改善健康至关重要。