《BioRxiv,8月21日,A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-09-02
  • A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction

    Monir Ejemel, Qi Li, Shurong Hou, Zachary A. Schiller, Julia A. Tree, Aaron Wallace, Alla Amcheslavsky, Nese Kurt Yilmaz, Karen R. Buttigieg, Michael J. Elmore, Kerry Godwin, Naomi Coombes, Jacqueline R. Toomey, Ryan Schneider, Anudeep S. Ramchetty, Brianna J. Close, Da-Yuan Chen, Hasahn L. Conway, Mohsan Saeed, Chandrashekar Ganesa, Miles W. Carroll, Lisa A. Cavacini, Mark S. Klempner, Celia A. Schiffer & Yang Wang

    Nature Communications volume 11, Article number: 4198 (2020)

    Abstract

    COVID-19 caused by SARS-CoV-2 has become a global pandemic requiring the development of interventions for the prevention or treatment to curtail mortality and morbidity. No vaccine to boost mucosal immunity, or as a therapeutic, has yet been developed to SARS-CoV-2. In this study, we discover and characterize a cross-reactive human IgA monoclonal antibody, MAb362. MAb362 binds to both SARS-CoV and SARS-CoV-2 spike proteins and competitively blocks ACE2 receptor binding, by overlapping the ACE2 structural binding epitope. Furthermore, MAb362 IgA neutralizes both pseudotyped SARS-CoV and SARS-CoV-2 in 293 cells expressing ACE2. When converted to secretory IgA, MAb326 also neutralizes authentic SARS-CoV-2 virus while the IgG isotype shows no neutralization. Our results suggest that SARS-CoV-2 specific IgA antibodies, such as MAb362, may provide effective immunity against SARS-CoV-2 by inducing mucosal immunity within the respiratory system, a potentially critical feature of an effective vaccine.

  • 原文来源:https://www.nature.com/articles/s41467-020-18058-8
相关报告
  • 《BioRxiv,3月17日,Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-18
    • Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections Huibin Lv, Nicholas C. Wu, Owen Tak-Yin Tsang, Meng Yuan, Ranawaka A. P. M. Perera, Wai Shing Leung, Ray T. Y. So, Jacky Man Chun Chan, Garrick K. Yip, Thomas Shiu Hong Chik, Yiquan Wang, Chris Yau Chung Choi, Yihan Lin, Wilson W. Ng, Jincun Zhao, View ORCID ProfileLeo L. M. Poon, J. S. Malik Peiris, Ian A. Wilson, Chris K. P. Mok doi: https://doi.org/10.1101/2020.03.15.993097 Abstract The World Health Organization has recently declared the ongoing outbreak of COVID-19, which is caused by a novel coronavirus SARS-CoV-2, as pandemic. There is currently a lack of knowledge in the antibody response elicited from SARS-CoV-2 infection. One major immunological question is concerning the antigenic differences between SARS-CoV-2 and SARS-CoV. We address this question by using plasma from patients infected by SARS-CoV-2 or SARS-CoV, and plasma obtained from infected or immunized mice. Our results show that while cross-reactivity in antibody binding to the spike protein is common, cross-neutralization of the live viruses is rare, indicating the presence of non-neutralizing antibody response to conserved epitopes in the spike. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《Nature,5月4日,A human monoclonal antibody blocking SARS-CoV-2 infection》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-05-05
    • A human monoclonal antibody blocking SARS-CoV-2 infection Chunyan Wang, Wentao Li, Dubravka Drabek, Nisreen M. A. Okba, Rien van Haperen, Albert D. M. E. Osterhaus, Frank J. M. van Kuppeveld, Bart L. Haagmans, Frank Grosveld & Berend-Jan Bosch Nature Communications volume 11, Article number: 2251 (2020) Abstract The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV) in cell culture. This cross-neutralizing antibody targets a communal epitope on these viruses and may offer potential for prevention and treatment of COVID-19.