《BioRxiv,3月17日,Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-03-18
  • Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections

    Huibin Lv, Nicholas C. Wu, Owen Tak-Yin Tsang, Meng Yuan, Ranawaka A. P. M. Perera, Wai Shing Leung, Ray T. Y. So, Jacky Man Chun Chan, Garrick K. Yip, Thomas Shiu Hong Chik, Yiquan Wang, Chris Yau Chung Choi, Yihan Lin, Wilson W. Ng, Jincun Zhao, View ORCID ProfileLeo L. M. Poon, J. S. Malik Peiris, Ian A. Wilson, Chris K. P. Mok

    doi: https://doi.org/10.1101/2020.03.15.993097

    Abstract

    The World Health Organization has recently declared the ongoing outbreak of COVID-19, which is caused by a novel coronavirus SARS-CoV-2, as pandemic. There is currently a lack of knowledge in the antibody response elicited from SARS-CoV-2 infection. One major immunological question is concerning the antigenic differences between SARS-CoV-2 and SARS-CoV. We address this question by using plasma from patients infected by SARS-CoV-2 or SARS-CoV, and plasma obtained from infected or immunized mice. Our results show that while cross-reactivity in antibody binding to the spike protein is common, cross-neutralization of the live viruses is rare, indicating the presence of non-neutralizing antibody response to conserved epitopes in the spike.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.03.15.993097v1
相关报告
  • 《BioRxiv,8月21日,A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-09-02
    • A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction Monir Ejemel, Qi Li, Shurong Hou, Zachary A. Schiller, Julia A. Tree, Aaron Wallace, Alla Amcheslavsky, Nese Kurt Yilmaz, Karen R. Buttigieg, Michael J. Elmore, Kerry Godwin, Naomi Coombes, Jacqueline R. Toomey, Ryan Schneider, Anudeep S. Ramchetty, Brianna J. Close, Da-Yuan Chen, Hasahn L. Conway, Mohsan Saeed, Chandrashekar Ganesa, Miles W. Carroll, Lisa A. Cavacini, Mark S. Klempner, Celia A. Schiffer & Yang Wang Nature Communications volume 11, Article number: 4198 (2020) Abstract COVID-19 caused by SARS-CoV-2 has become a global pandemic requiring the development of interventions for the prevention or treatment to curtail mortality and morbidity. No vaccine to boost mucosal immunity, or as a therapeutic, has yet been developed to SARS-CoV-2. In this study, we discover and characterize a cross-reactive human IgA monoclonal antibody, MAb362. MAb362 binds to both SARS-CoV and SARS-CoV-2 spike proteins and competitively blocks ACE2 receptor binding, by overlapping the ACE2 structural binding epitope. Furthermore, MAb362 IgA neutralizes both pseudotyped SARS-CoV and SARS-CoV-2 in 293 cells expressing ACE2. When converted to secretory IgA, MAb326 also neutralizes authentic SARS-CoV-2 virus while the IgG isotype shows no neutralization. Our results suggest that SARS-CoV-2 specific IgA antibodies, such as MAb362, may provide effective immunity against SARS-CoV-2 by inducing mucosal immunity within the respiratory system, a potentially critical feature of an effective vaccine.
  • 《BioRxiv,3月14日,A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-15
    • A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV Meng Yuan, Nicholas C. Wu, Xueyong Zhu, Chang-Chun D. Lee, Ray T. Y. So, Huibin Lv, Chris K. P. Mok, Ian A. Wilson doi: https://doi.org/10.1101/2020.03.13.991570 Abstract The outbreak of COVID-19, which is caused by SARS-CoV-2 virus, continues to spread globally, but there is currently very little understanding of the epitopes on the virus. In this study, we have determined the crystal structure of the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein in complex with CR3022, a neutralizing antibody previously isolated from a convalescent SARS patient. CR3022 targets a highly conserved epitope that enables cross-reactive binding between SARS-CoV-2 and SARS-CoV. Structural modeling further demonstrates that the binding site can only be accessed when at least two RBDs on the trimeric S protein are in the ″up″ conformation. Overall, this study provides structural and molecular insight into the antigenicity of SARS-CoV-2. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.