《高效利用弱磁能 新型收集器助物联网传感器“自发电”》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-04-08
  • 120%

    这种新型弱磁能收集器结构,可使物联网传感器免于更换、维修电池等种种人工繁琐操作,实现弱磁条件下的“自发电”,其输出功率比传统磁能收集结构提高约120%。

    我国“双碳”战略倡导绿色、环保、低碳的生活方式,这有赖于绿色能源技术的不断发展创新。在我国大力发展可再生能源的当下,磁能等现实环境中微能源的回收再利用引起众多研究者的关注。

    哈尔滨工程大学水声工程学院与创新发展基地“海洋磁传感器和探测”团队青年教师、副教授储昭强研究设计了一种新型弱磁能收集器结构,可使物联网传感器免于更换、维修电池等种种人工繁琐操作,实现弱磁条件下的“自发电”,其输出功率比传统磁能收集结构提高约120%。近日,该研究学术论文“两端夹持磁—力—电俘能器件中显著增强的弱磁能量回收性能”在能源材料领域国际著名期刊《先进能源材料》在线发表。

    回收再利用环境中的微能源

    “万物互联”是打造智能世界的一个重要引擎,也催生了物联网技术的快速发展。目前,发展物联网的一大挑战是寻找传感通信节点的自供能技术,以支持大规模、分布式传感网络的构建。

    针对这一技术挑战,我国多个领域都在积极筹划以图破解之道。2021年国家重点研发计划“智能传感器”重点专项针对人体多参量生物传感器在无线场景下自供能入网难题,提出研究从人体获取能量的自供能技术;2022年国家重点研发计划“智能传感器”重点专项针对配用电网络状态感知分布式传感器的供能入网难题,提出了磁电耦合自供能磁场敏感元件及传感器的项目指南;2022年国家自然科学基金也将攻关航天用微型压电振动俘能技术纳入指南范围。

    可以说发展分布式能源获取技术,实现环境中微能源的回收再利用具有重要价值,也是响应国家节能减排战略,助力碳达峰的有效举措。

    对于环境微能源的回收利用,在振动能、辐射能和近场电磁能等众多可收集能源中,电力电缆、工业机械和家用电器等产生的杂散磁能由于其频率固定和分布广泛,比风能等低频能量获取效率更高,一直受到研究人员的关注。特别是在建设智能电网的背景下,对输电线路状态参数的在线监测与故障诊断迫切需要从架空电缆中俘获能量而构建可持续的自供能传感网络。

    就如小说《三体》中描绘的那个美丽新世界,杯子无需电源、电池,可以自加热,空中的飞车也不用电池,却能不停地飞,永远也不会没有电,都是由于电源用微波或其他形式的电磁震荡来发电而形成的无线供电场。这种技术其实就是目前用于手机无线充电的技术。最初,人们也把目光投向了这种传统线圈式感应取电装置。但是这种技术有着体积大、安装不便和难以耐受短时大电流冲击等突出问题。

    因而,人们开始研究一种由磁能转化为机械能再转化为电能(MME)的俘能装置,这一技术有望成为下一代低频磁场能量收集的新选择。

    储昭强介绍,这种新型俘能器件是利用磁扭矩效应以及磁滞伸缩效应,再利用压电效应实现机械能与电能之间的转换,其优势在于无需线圈式感应取电装置所需的闭合磁路,且可以实现更高效率的能量转换和对强电流脉冲的更高耐受度。

    适用于低场能量收集的新方法

    储昭强从2016年开始接触振动和磁场的能量收集技术。从2016年到2021年,一直致力于基于传统悬臂梁式谐振结构的材料和器件方面的研究。这是一种一端固定而另一端自由,且在自由端附加质量块(磁铁)的能量收集器结构。这种结构由自由端磁性质量块提供驱动扭矩,同时贡献了超过90%的等效质量。在这种情况下,如果要维持谐振器50赫兹(Hz)的谐振频率不变,则难以单纯通过增加自由端磁铁的质量来增强磁—力耦合性能。也正是这个原因,目前大多数研究的悬臂梁式磁—机—电器件仅局限于对强磁场,即大于5奥斯特(Oe)磁场的能量收集。世界卫生组织指出公众可接触的50/60Hz交变磁场安全阈值为1Oe,而且环境中杂散磁场的大小一般也低于此参考值。因此也有必要探索适应于低场能量收集的新原理和新方法。

    基于“磁—机—电俘能器件如何降低自由端磁性质量块的等效质量”这一思考,储昭强大胆创新,提出了一种两端夹持梁的设计思路。这种设计使磁—机—电俘能器件的两端都固定起来,采用一种二阶振动模式,降低了中心磁性质量块的动能,从而减小了其对谐振系统等效质量的贡献,在增加磁铁体积的情况下大大提升了系统在50Hz弱场条件下的输出性能。

    实验表明,在弱磁环境的相同激励条件下,该能量收集器在同等单位时间内可输出的电能是传统悬臂梁式结构的2倍多,完全可以使没有安装电池的传感器正常工作并与手机终端进行通信连接。

    储昭强表示:“在科研工作中,起到关键作用的往往就是一个小小的,甚至不起眼的设计方法。但是这个方法的来源一定是基于长期的研究和思考。”

    未来或用于水下小型仿生平台

    “目前,这种对于磁场的能量收集技术在应用上还有一定的局限性,科学总是解决了一个问题就会带来很多新问题的过程。”储昭强向科技日报记者表示,未来,他将主要考虑进一步优化两端夹持磁—机—电俘能器件在材料方面、几何方面的参数设计,进一步实现增加适应的磁场变化范围和微型化的集成,为研制自供能磁场敏感元件,电网输变电智能感知与配用电网络拓扑关系识别等应用提供关键技术。

    储昭强同时表示,团队将结合哈尔滨工程大学船海科研特色优势,深入研究水下小型仿生平台如水下机器鱼、无人水下航行器等基于超声和磁场的无线供能技术,这不仅能解决小型仿生平台等能源“取”的问题,同时解决能源“供”的问题。

    储昭强所在的哈尔滨工程大学水声学院与创新发展基地“海洋磁传感器和探测”团队于2017年成立并不断发展壮大,团队瞄准水下目标多传感探测的基础理论、关键技术和工程应用,全面开展了基础磁材料、磁传感器研制、水下信息感知和处理等技术研究。

  • 原文来源:http://www.cnenergynews.cn/
相关报告
  • 《MIT开发出有光即可供电的新型低成本传感器》

    • 来源专题:数控机床与工业机器人
    • 编译者:icad
    • 发布时间:2019-10-15
    • 随着5G技术的发展,物联网的重要性愈发凸显。预测称,到2025年,全球物联网设备的数量可能会增加到750亿,这其中便包括收集有关基础设施和环境实时数据的传感器。然而,就目前情况来看,这些传感器需要频繁地更换电池,这对长期监测来说可能是个不小的问题。 对此,近日,麻省理工学院(MIT)的研究人员设计出一款由光伏供电的传感器,或许可解决上述问题。据介绍,用这种传感器来传输数据,使用数年才需要更换电池。研究人员在普通射频识别(RFID)标签上,安装薄膜钙钛矿电池,来作为能量收集器,是这一新型光伏供电传感器的关键技术。 据了解,这种电池具备低成本、灵活性和易制造等潜在优势,可在明亮的阳光和较暗的室内条件下为传感器供电。此外,研究人员还发现,太阳能给传感器提供了强大的动力,可使数据传输的距离更远,并可将多个传感器集成到一个RFID标签上。 研究人员介绍,传统太阳能电池体积庞大,且制造费用相对昂贵,即便缩小其尺寸也需要耗费相当高的成本。而且,它们并不灵活,也不能被制成透明的,而透明属性,对于放置在窗户和汽车挡风玻璃等环境上的温度监测传感器来说,是十分必要的。 实际上,现阶段的传统太阳能电池还只能在较强的太阳光下,而不是室内低亮度的条件下有效地收集能量。 反观钙钛矿电池,它可以使用简单的“卷对卷”制造技术进行印刷,每套的成本只需几美分,也就是不足一元人民币。同时,用钙钛矿做的电池可以变得更薄、更加柔软,且能做成透明的。它还能根据接收的光线做出调整,能从任何类型的室内或者室外的照明环境中收集能量。 电磁反向散射耦合型的RFID读写器 研究团队的想法就是,将低成本的电池与同样低成本的RFID标签相结合,RFID是一种无电池的贴纸,可用来监控全球数十亿种产品。这些贴纸中配有微型的超高频天线,每一个制作成本大概也只有3到5美分,也是均不足一元人民币。 RFID标签要依靠一种叫做“反向散射”(backscatter)的通信技术,该技术通过将调制过的无线信号从标签上反射回读取器来传输数据。一种称为“读取器”(reader)的无线设备(基本上类似于Wi-Fi路由器)会对标签发出ping信号,设备便会启动并反向散射出一个独特的信号,该信号包含了所粘贴产品的信息。 传统上,标签会收集读取器发送的少量射频能量,来为存储数据的内部芯片供电,并使用剩余的能量来调制返回的信号。但这仅仅相当于几微瓦的功率,进而将它们的通信范围限制在了一米之内。 而MIT研究人员的传感器由一个塑料基板上的RFID标签组成,钙钛矿太阳能电池阵列则直接连接到标签上的集成电路中。与传统系统一样,读取器会扫视整个房间,每个标签都会做出响应。但是,它并没有使用读取器的能量,而是从钙钛矿电池中获取了能量,以使电路通电并通过反向散射RF信号来发送数据。 这项创新的关键在于定制单元。它们是分层制造的,钙钛矿材料夹在电极、阴极和特殊的电子传输层材料之间。这样可达到约10%的效率,该数值对于仍处于实验室状态的钙钛矿电池来说是相当高的。 同时,这种分层结构还可让研究人员能够调整每个电池的最佳“带隙”,这是一种电子运动特性,决定了在不同光照条件下电池的性能。然后,研究人员将这些独立的个体合并为拥有四个单元的模块。 在相关论文中,这些模块在单次阳光照射下能产生4.3V伏特的电量,这是衡量太阳能电池在阳光下产生多少电压的标准。这足以给电路供电——大约1.5V,每隔几秒就能发送约5米远的数据。同时,这些模块在室内的照明条件下也具有类似性能。 在IEEE Sensors上的论文,主要展示了用于室内应用的宽带隙钙钛矿电池。根据产生的电压大小的不同,其在室内荧光灯下的效率可达到 18.5%至21.4%之间。基本上,任何光源照射45分钟,都可为室内或室外的传感器提供大约3个小时的电力。 这些传感器可在室内或室外放置数月或数年,直到它们降解并需要更换为止。具体使用时间取决于环境中的某些因素,如湿度和温度等。对于需要在室内和室外进行长期监测的所有传感应用而言,这一发明都是有价值的,包括跟踪供应链中的货物、监测土壤,以及监测建筑物和家庭中设备等。 可以说,这项工作基本上是使用能量收集器为各种应用构建增强的RFID标签。在此项工作中,RFID电路的原型只是用来监测温度的。接下来,研究人员的目标是扩大规模,并增加针对更多层面的环境监测传感器,例如湿度、压力、振动传感器等。这些传感器一旦被大规模部署,对于在室内进行长期数据收集的工作具有巨大的帮助,还能进一步助力构建算法,提高智能建筑的能源效率等。下一步,科研人员的工作是,利用印刷电子工艺集成这些相同的技术,进一步降低该无线传感器的制造成本。
  • 《传感器市场爆发式增长及未来的发展趋势》

    • 来源专题:数控机床与工业机器人
    • 编译者:icad
    • 发布时间:2019-12-24
    • 随着物联网信息和集成电路的不断发展,传感器成为了现代信息产业的重要支柱。在世界各国普遍的重视和投入开发下,全球的传感器市场在不断变化创新中呈现出了快速增长的趋势。   我国的传感器产业如何突破发展瓶颈?   利好政策推动行业快速发展:多项战略性、指导性政策文件,推动我国传感器及物联网产业向着融合化、创新化、生态化、集群化方向加快发展。   下游应用发展迅速,带动传感器需求:传感器应用范围涵盖工业、汽车电子、消费电子、物联网等多个领域,下游应用的蓬勃发展将提高对信息感知的需求,带动传感器的需求增加。   我国传感器朝着“四化”方向发展,有望实现弯道超车:传感器系统向着微小型化、智能化、多功能化和网络化的方向发展,我国企业仍有弯道超车的机会。   产业集群化发展:我国传感器企业正努力追赶国外企业,并出现了区域性的传感器企业集群。当前传感器的生产企业主要集中在长三角地区,并逐渐形成以北京、上海、南京、深圳、沈阳和西安等中心城市为主的区域空间布局。其中,主要传感器企业有接近一半的比例分布在长三角地区,其他依次为珠三角、京津地区、中部地区及东北地区等。   其中,长三角区域逐渐形成了包括热敏、磁敏、图像、称重、光电、温度、气敏等较为完备的传感器生产体系及产业配套;珠三角区域形成了以热敏、磁敏、称重、超声波为主的传感器产业体系;东北地区主要生产MEMS力敏传感器、气敏传感器、湿度传感器;京津区域及中部地区则以产学研紧密结合的模式发展,主要集中于新型传感器的研发创新。   在各种新兴科学技术呈辐射状广泛渗透的当今社会,随着智能时代逐渐到来,作为现代科学“耳目”的传感器,成为人们快速获取、分析和利用有效信息的基础,传感器将变得愈加不可替代。   传感器行业未来的发展趋势和方向   未来,在经济环境持续好转的大背景下,传感器市场的需求量会不断增多,传感器将越来越多地被应用到社会建设和生活的各个领域。据高工产业研究院预测,未来几年全球传感器市场将保持20%以上的增长速度。   自2014年以来,国家就先后出台了一系列具有战略性、指导性的文件,有效推动了我国传感器及物联网产业向着创新化、融合化、集群化以及智能化的方向快速发展。智能传感器具备一定的通信功能,并且拥有采集、处理、交换信息的能力,可通过软件技术来实现高精度的信息采集。   物联网的发展改变了人们的生活方式,也离不开传感器设备的存在,传感器也将朝着可移动化、微型化、集成化以及多样化的方向发展。   在此环境下,本土企业一方面要面临传感器产业链薄弱、技术条件跟不上等挑战,但有望加大技术投资,攫取更多的市场份额,并在产业资源整合上做出行动,增强国内传感器产业竞争力。   传感器的MEMS制造工艺是未来智能化、微型化、集成化和可移动化的基础。目前,能够有能力在传感器芯片领域做到MEMS制造工艺的只有广州奥松电子有限公司,其3寸晶圆生产线以及在建的6寸晶圆生产线,从传感器芯片的设计、制造、封装和应用,实现了全产业链的发展,打破国外同类企业的垄断地位,为国内的物联网发展打下了良好的基础,再不会遭遇到“芯片”卡脖子的困境。