《研究揭示lncRNAs在蓖麻种子发育中的表达调控和遗传模式》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-07-22
  • 长链非编码RNA(lncRNAs)是基因组转录水平的重要形式之一,但长期以来lncRNAs的生物学意义一直缺乏认识。越来越多的研究发现植物lncRNAs可能广泛参与调控植物生长发育以及对环境胁迫的反应。在开花植物种子发育过程中由于双受精现象的发生产生了2倍体的胚和3倍体的胚乳。可能是因为胚乳具有不均等的父母本基因组剂量,引起了丰富的表观修饰如胚乳基因组的低甲基化和基因印迹(gene imprinting),但长期以来lncRNAs在胚和胚乳中的表达式样及其是否参与种子发育过程中的表观调控还不清楚。对于大部分双子叶植物(如拟南芥)而言,在种子发育过程中,胚乳会随着种子的发育而消失,从而给调查胚乳的表观调控带来困难。

    中国科学院昆明植物研究所刘爱忠团队利用双子叶典型的胚乳型种子植物蓖麻为研究材料,深入解析了lncRNAs的表达规律,揭示了lncRNAs与其临近的蛋白编码基因表现了强烈的共表达,而且它们参与了不同的表达调控网络,强烈地暗示了lncRNAs在调控胚和胚乳的发育中发挥着重要的生物学功能。同时,通过比较发现lncRNAs在物种间的序列保守性低,而在基因组上的位置保守性高。结合前期蓖麻种子DNA 甲基化分析的结果(Xu et al., 2016, Plant Physiology),研究发现胚乳特异表达的lncRNAs与胚乳基因组的低甲基化密切相关。在互交胚和胚乳中(ZB107 × ZB306),绝大部分等位基因能够按照它们父母本基因组的剂量进行表达,显示出lncRNAs对父母本基因组剂量的改变不敏感(从胚的1m:1p到胚乳的2m:1p)。但在胚乳中,有lncRNAs等位位点的表达显着偏离了父母本基因组比例2m:1p的现象,表现出明显的父母本起源影响(parent-of-origin effect),即基因组印迹;一些印迹的lncRNAs与先前鉴定的印迹基因(Xu et al., 2014, Nucleic Acids Research)在基因组中显着聚类,且表现出协同转录,进一步强烈暗示了lncRNAs可能参与了基因组印迹的发生。

    该研究结果为人们理解lncRNAs在植物种子发育与储藏物质累积过程的作用,lncRNAs的表观调控,不平衡的父母本基因组剂量以及基因组印迹对lncRNAs的表达影响提供了新的认识。主要研究成果以 Differential expression networks and inheritance patterns of long non‐coding RNAs in castor bean seeds 为题发表在The Plant Journal上,博士后徐伟为论文第一作者。该研究得到国家科技支撑项目(2015BAD15B02)、国家自然科学基金项目(31661143002, 31771839和31701123)和云南省应用基础研究计划项目(2016FB060)的支持。

  • 原文来源:http://news.bioon.com/article/6725072.html
相关报告
  • 《遗传发育所揭示决定种子活力的表观遗传调控机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-02-13
    •   种子的出现,使高等植物能够在多样的自然环境中得以广泛生存和分布。产生高活力的种子从而在环境条件合适时迅速萌发并发育产生健壮的幼苗是高等植物繁衍的关键,也是农业生产中种子品质的重要指标。然而,在种子形成时,其萌发和胚后发育的能力如何产生,尚不清楚。        近日,中国科学院遗传与发育生物学研究所姜丹华研究组在《自然-通讯》(Nature Communications)上,发表了题为Histone H3.3 deposition in seed is essential for the post-embryonic developmental competence in Arabidopsis的研究论文。该研究发现了一个组蛋白H3的变体H3.3在染色质上的装配是种子获得萌发和胚后发育能力的关键,并分析了H3.3在其中可能发挥的调控机制,为进一步阐释种子活力的形成机制奠定了基础。        对H3.3完全敲除的拟南芥突变体的研究发现,该突变体能够正常产生成熟的种子,且形态和种子储藏蛋白等指标均与野生型一致。然而,h3.3突变体种子无法正常萌发,抑或是少数萌发的种子也在萌发后立即停止发育。研究分析H3.3在种子染色质上的分布发现,其在成熟种子中具有特异的基因5’端/启动子区和基因3’端均富集的分布模式,而在营养组织如幼苗中H3.3仅在基因3’端富集。H3.3对于成熟种子中染色质开放性的形成颇为重要,促进基因5’端/启动子区的开放,从而使种子在萌发时感知环境以及胚后发育的基因能够正常表达。此外,H3.3在基因3’端抑制染色质的开放性和基因上的异常转录 (cryptic transcription)。   该研究揭示了植物通过组蛋白变体H3.3在种子中的特异装配,从而“打开”染色质为其萌发和胚后发育做了准备机制。因而在一定程度上H3.3具有类似先锋因子在细胞命运调节中的作用。作为一种替代(replacement)组蛋白,H3.3在较多植物细胞的分化时均发生明显富集。因此,H3.3可能是植物细胞命运决定的关键因子,对其作用机制的进一步研究将有助于探索植物再生等重要科学问题。        研究工作得到中国科学院战略性先导科技专项、国家自然科学基金和国家重点研发计划等的支持。
  • 《遗传发育所揭示决定种子活力的表观遗传调控机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-24
    • 种子的出现,使高等植物能够在多样的自然环境中得以广泛生存和分布。产生高活力的种子从而在环境条件合适时迅速萌发并发育产生健壮的幼苗是高等植物繁衍的关键,也是农业生产中种子品质的重要指标。然而,在种子形成时,其萌发和胚后发育的能力如何产生,尚不清楚。      近日,中国科学院遗传与发育生物学研究所姜丹华研究组在《自然-通讯》(Nature Communications)上,发表了题为Histone H3.3 deposition in seed is essential for the post-embryonic developmental competence in Arabidopsis的研究论文。该研究发现了一个组蛋白H3的变体H3.3在染色质上的装配是种子获得萌发和胚后发育能力的关键,并分析了H3.3在其中可能发挥的调控机制,为进一步阐释种子活力的形成机制奠定了基础。      对H3.3完全敲除的拟南芥突变体的研究发现,该突变体能够正常产生成熟的种子,且形态和种子储藏蛋白等指标均与野生型一致。然而,h3.3突变体种子无法正常萌发,抑或是少数萌发的种子也在萌发后立即停止发育。研究分析H3.3在种子染色质上的分布发现,其在成熟种子中具有特异的基因5’端/启动子区和基因3’端均富集的分布模式,而在营养组织如幼苗中H3.3仅在基因3’端富集。H3.3对于成熟种子中染色质开放性的形成颇为重要,促进基因5’端/启动子区的开放,从而使种子在萌发时感知环境以及胚后发育的基因能够正常表达。此外,H3.3在基因3’端抑制染色质的开放性和基因上的异常转录 (cryptic transcription)。   该研究揭示了植物通过组蛋白变体H3.3在种子中的特异装配,从而“打开”染色质为其萌发和胚后发育做了准备机制。因而在一定程度上H3.3具有类似先锋因子在细胞命运调节中的作用。作为一种替代(replacement)组蛋白,H3.3在较多植物细胞的分化时均发生明显富集。因此,H3.3可能是植物细胞命运决定的关键因子,对其作用机制的进一步研究将有助于探索植物再生等重要科学问题。      研究工作得到中国科学院战略性先导科技专项、国家自然科学基金和国家重点研发计划等的支持。