《遗传发育所揭示决定种子活力的表观遗传调控机制》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2022-12-24
  • 种子的出现,使高等植物能够在多样的自然环境中得以广泛生存和分布。产生高活力的种子从而在环境条件合适时迅速萌发并发育产生健壮的幼苗是高等植物繁衍的关键,也是农业生产中种子品质的重要指标。然而,在种子形成时,其萌发和胚后发育的能力如何产生,尚不清楚。     

    近日,中国科学院遗传与发育生物学研究所姜丹华研究组在《自然-通讯》(Nature Communications)上,发表了题为Histone H3.3 deposition in seed is essential for the post-embryonic developmental competence in Arabidopsis的研究论文。该研究发现了一个组蛋白H3的变体H3.3在染色质上的装配是种子获得萌发和胚后发育能力的关键,并分析了H3.3在其中可能发挥的调控机制,为进一步阐释种子活力的形成机制奠定了基础。     

    对H3.3完全敲除的拟南芥突变体的研究发现,该突变体能够正常产生成熟的种子,且形态和种子储藏蛋白等指标均与野生型一致。然而,h3.3突变体种子无法正常萌发,抑或是少数萌发的种子也在萌发后立即停止发育。研究分析H3.3在种子染色质上的分布发现,其在成熟种子中具有特异的基因5’端/启动子区和基因3’端均富集的分布模式,而在营养组织如幼苗中H3.3仅在基因3’端富集。H3.3对于成熟种子中染色质开放性的形成颇为重要,促进基因5’端/启动子区的开放,从而使种子在萌发时感知环境以及胚后发育的基因能够正常表达。此外,H3.3在基因3’端抑制染色质的开放性和基因上的异常转录 (cryptic transcription)。   该研究揭示了植物通过组蛋白变体H3.3在种子中的特异装配,从而“打开”染色质为其萌发和胚后发育做了准备机制。因而在一定程度上H3.3具有类似先锋因子在细胞命运调节中的作用。作为一种替代(replacement)组蛋白,H3.3在较多植物细胞的分化时均发生明显富集。因此,H3.3可能是植物细胞命运决定的关键因子,对其作用机制的进一步研究将有助于探索植物再生等重要科学问题。     

    研究工作得到中国科学院战略性先导科技专项、国家自然科学基金和国家重点研发计划等的支持。

  • 原文来源:https://www.cas.cn/syky/202212/t20221216_4858169.shtml
相关报告
  • 《遗传发育所揭示决定种子活力的表观遗传调控机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-02-13
    •   种子的出现,使高等植物能够在多样的自然环境中得以广泛生存和分布。产生高活力的种子从而在环境条件合适时迅速萌发并发育产生健壮的幼苗是高等植物繁衍的关键,也是农业生产中种子品质的重要指标。然而,在种子形成时,其萌发和胚后发育的能力如何产生,尚不清楚。        近日,中国科学院遗传与发育生物学研究所姜丹华研究组在《自然-通讯》(Nature Communications)上,发表了题为Histone H3.3 deposition in seed is essential for the post-embryonic developmental competence in Arabidopsis的研究论文。该研究发现了一个组蛋白H3的变体H3.3在染色质上的装配是种子获得萌发和胚后发育能力的关键,并分析了H3.3在其中可能发挥的调控机制,为进一步阐释种子活力的形成机制奠定了基础。        对H3.3完全敲除的拟南芥突变体的研究发现,该突变体能够正常产生成熟的种子,且形态和种子储藏蛋白等指标均与野生型一致。然而,h3.3突变体种子无法正常萌发,抑或是少数萌发的种子也在萌发后立即停止发育。研究分析H3.3在种子染色质上的分布发现,其在成熟种子中具有特异的基因5’端/启动子区和基因3’端均富集的分布模式,而在营养组织如幼苗中H3.3仅在基因3’端富集。H3.3对于成熟种子中染色质开放性的形成颇为重要,促进基因5’端/启动子区的开放,从而使种子在萌发时感知环境以及胚后发育的基因能够正常表达。此外,H3.3在基因3’端抑制染色质的开放性和基因上的异常转录 (cryptic transcription)。   该研究揭示了植物通过组蛋白变体H3.3在种子中的特异装配,从而“打开”染色质为其萌发和胚后发育做了准备机制。因而在一定程度上H3.3具有类似先锋因子在细胞命运调节中的作用。作为一种替代(replacement)组蛋白,H3.3在较多植物细胞的分化时均发生明显富集。因此,H3.3可能是植物细胞命运决定的关键因子,对其作用机制的进一步研究将有助于探索植物再生等重要科学问题。        研究工作得到中国科学院战略性先导科技专项、国家自然科学基金和国家重点研发计划等的支持。
  • 《遗传发育所揭示移动的ARGONAUTE 1d调控水稻低温育性新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-10-31
    •   与动物中piRNA类似,单子叶植物生殖细胞中产生大量21-和24-nt phasiRNA参与雄配子发育,特别是极端温度下的育性调控,而有关phasiRNA的合成机制及功能调控却知之甚少。   近日,中国科学院遗传与发育生物学研究所研究员曹晓风研究组在Science China Life Sciences上,发表了题为Mobile ARGONAUTE 1d binds 22-nt miRNAs to generate phasiRNAs important for low-temperature male fertility in rice的论文,揭示了OsAGO1d可从花药壁细胞移动到花粉母细胞,通过结合22-nt miRNA介导phasiRNA的合成以维持水稻低温育性。   前期研究发现,phasiRNA的合成需要22-nt miR2118和miR2275与AGO蛋白形成沉默复合体介导PHAS转录本起始切割,随后在RDR6及DCLs的加工下,产生成熟的21-和24-nt phasiRNA (Johnson et al., 2009;Song et al., 2012a;Song et al., 2012b;Teng et al., 2020)。其中,具有5′C特征的21-nt phasiRNA可装载进入AGO蛋白家族的MEL1中参与减数分裂调控(Nonomura et al., 2007;Komiya et al., 2014),而参与phasiRNA产生和发挥功能的其他AGO蛋白尚且未知。   研究发现,水稻OsAGO1d受低温诱导表达,而OsAGO1d敲除突变株在低温下绒毡层降解延迟,导致雄性不育。科研人员通过RNA免疫共沉淀实验,发现OsAGO1d主要结合带有5′U 的21-nt phasiRNA、miR2118及miR2275家族成员。研究通过全基因组小RNA测序发现OsAGO1d介导了近千个PHAS位点phasiRNA的产生。RNA原位杂交结果显示,OsAGO1d主要在花药壁细胞中转录,而免疫荧光与免疫金标的结果则显示OsAGO1d蛋白更多的在花粉母细胞中积累,表明OsAGO1d蛋白质可从花药壁细胞移动到花粉母细胞中。为探究OsAGO1d的移动对phasiRNA合成的重要作用,科研人员通过分析依赖于OsAGO1d的phasiRNA组织表达及在花粉母细胞中的分布比例,揭示OsAGO1d在花药壁细胞中结合miR2118从而负责21-nt phasiRNA的产生,而OsAGO1d移动到花粉母细胞中主要结合miR2275产生24-nt的phasiRNA。该研究解析了OsAGO1d介导phasiRNA代谢在低温育性调控的重要作用,其可移动的特性精细调控了不同长度phasiRNA的时空分布,为花药发育过程中花药壁与花粉母细胞之间信号交流奠定了新的物质基础。   研究工作得到国家自然科学基金、中国科学院战略性先导科技专项及中国科学院前沿科学重点研究计划的支持。