《港陆钢铁公司焦化废水生化处理系统改造工程》

  • 来源专题:水体污染治理
  • 编译者: 王阳
  • 发布时间:2019-12-31
  • 摘要:唐山港陆钢铁有限公司焦化废水生化处理系统水力停留时间短、出水水质差,严重影响了深度处理效果。针对系统存在的问题,在原废水处理设施基础上将厌氧池改为预曝气池,好氧池增加移动床生物膜反应器(MBBR)。实际运行结果表明:经合理改造后,生化处理系统运行稳定,处理效果良好,经混凝沉淀处理后,出水水质达到《炼焦化学工业污染物排放标准》(GB16171—2012)的间接排放标准,为后续深度处理提供了有利条件。

    焦化废水是指煤炼焦、煤气净化、化工产品精制及化工产品回收过程中产生的废水, 主要来源为剩余氨水、焦油加工和粗苯精制中产生的废水及煤气净化过程中形成的废水, 其中以蒸氨过程中产生的剩余氨水为主。受原煤性质、炼焦生产工艺、产品回收方式等因素影响,焦化废水中污染物成分复杂、种类繁多,其主要包含多环芳香族化合物、酚类化合物以及含氮、氧、碳的杂环化合物等有机物与硫化物、氰化物、硫氰化物等无机物。同时,焦化废水水质变化不稳定,氨氮及有机物含量高,而且所含大部分有机物难降解,可生化性差,是炼焦企业中难以处理的工业废水, 是目前环境保护领域急需解决的一个难题。

    唐山港陆钢铁有限公司焦化厂现阶段年产焦炭100万t,该厂已有生化处理量为100m3/h的焦化废水处理站,采用预处理、A2/O、混凝沉淀的主体处理工艺。原有废水处理站出水主要回用于湿法熄焦,为适应环保达标要求, 同时也为企业实现可持续性发展, 唐山港陆钢铁有限公司已采用干熄焦替代湿熄焦,因此,决定对原废水处理站混凝沉淀出水进行深度处理并回用。2015年焦化厂对废水处理站的生化处理系统进行改造,以提高出水水质及处理效率,保证后续深度处理出水水质达到工业循环冷却水补水水质要求,实现全厂生产废水“零排放”。

相关报告
  • 《焦化废水处理技术的研究进展》

    • 来源专题:水体污染治理
    • 编译者:王阳
    • 发布时间:2019-07-19
    • 焦化废水是在煤制焦炭、煤气净化和化工产品精制过程中产生的废水,其成分复杂多变,除氨氮、氰及硫氰根等无机污染物外,还含有酚类、萘、吡啶、喹啉等杂环及多环芳香族化合物(PAHs)[1]。由于氰化物、多环芳烃及杂环化合物很难生物降解,加之高浓度氨氮对微生物活性具有很强的抑制作用,导致废水的可生化性较差,焦化废水一直是公认的最难处理的工业废水之一[2]。 随着我国钢铁工业的飞速发展,焦炭产能的不断扩大,产生的焦化废水数量也在不断增加,其达标排放问题越来越受到环保部门及企业的高度重视。同时“十二五”规定,单位工业增加值用水量需要降低30%,水资源已经成为阻碍很多企业可持续发展的瓶颈,因此开发出经济合理、新型高效的焦化废水处理工艺仍旧是工业废水研究领域的重大课题。 1焦化废水的来源和水质特点及危害 1.1 焦化废水的来源 焦化废水是在煤高温裂解得到焦炭和煤气的生产过程中回收焦油、苯等副产品而产生的,其主要来源有: (1)煤高温干馏和荒煤气冷却过程中产生的剩余氨水; (2)煤气净化过程中产生的煤气终冷水及粗苯分离水; (3)粗焦油加工、苯精制、精酚生产及古马隆生产等过程产生的污水; (4)接触煤、焦粉尘等物质的废水。这几种废水中,一般剩余氨水占废水总量的50%~70%,是焦化废水处理的重点[3]。 1.2 焦化废水水质特点及危害 (1)成分复杂:焦化废水组成复杂,其中所含的污染物可分为无机污染物和有机污染物两大类。无机污染物一般以铵盐的形式存在,有机物除酚类化合物以外,还包括脂肪族化合物、杂环类化合物和多环芳烃等。其中以酚类化合物为主,占总有机物的85%左右,主要成分有苯酚、邻甲酚、对甲酚、邻对甲酚、二甲酚、邻苯二甲苯及其同系物等;杂环类化合物包括二氮杂苯、氮杂联苯、吡啶等;多环类化合物包括萘、蒽、菲等。 (2)含有大量的难降解物,可生化性较差:焦化废水中有机物(以COD计)含量高,且由于废水中所含有机物多为芳香族化合物和稠环化合物及吲哚、吡啶等杂环化合物,其BOD5/COD值低,一般为0.3~0.4,有机物稳定,微生物难以利用,废水的可生化性差。 (3)废水毒性大:其中氰化物、芳环、稠环、杂环化合物都对微生物有毒害作用,有些甚至在废水中的浓度已超过微生物可耐受的极限。 (4)含有危害水生生物和人体的剧毒及致癌物质:主要污染物质为环链有机化合物、叠氮化合物以及氨氮等。这些物质对生态环境以及人体的健康都会造成一定的危害,如果人直接饮用了含一定浓度这类物质的水或长时间吸入含该类物质的空气,将会危害身体健康,严重者可以致癌;特别是有些物质可在动物或植物体内富集,使其浓度浓缩许多倍,最终通过食物链侵害到人类;焦化废水中的含碳类化合物多数都是耗氧类物质,它们进入水体后要消耗水体中的溶解氧,严重时可以导致水体的腐化;而焦化废水中的含氮类物质,能导致水体的富营养化,可以导致藻类的大量孽生和繁殖;氨氮在水体中还能转化成硝态氮,婴幼儿饮用了含有一定浓度硝态氮的水,可导致白血病。因此,焦化废水对自然生态的破坏及其严重,对人类的威胁巨大[4]。 2 焦化废水处理技术的研究进展 目前,国内大部分的焦化厂普遍采用普通活性污泥法处理经蒸氨、脱酚预处理的焦化废水,处理后水中的酚、氰、油等有害物质大为降低,但对COD和NH3-N的去除率并不高,难降解物质的存在使出水水质不能达到国家排放标准。因此,还需要进行深度处理即三级处理。然而,深度处理费用昂贵,成本压力大,多数焦化厂仅采用生化处理,未经三级处理,造成未达标排放,严重污染了水环境,给人类健康带来了严重危害[5-6]。因此,寻求和研究新的处理工艺是提高焦化废水处理效果的关键所在。 2.1 焦化废水传统处理技术 2.1.1 芬顿(Fenton)试剂处理 1984年,H.J.H.Fenton发现通过H2O2与Fe2+的混合后,各种简单的和复杂的有机化合物均能被氧化。其机理认为是Fenton试剂通过催化分解产生羟基自由基(·OH)进攻有机物分子(RH)夺取氢,并使其降解为小分子有机物或矿化为CO2和H2O。K.Banerjee等对焦化废水进行研究,发现采用Fenton试剂处理后能有效地减小焦化废水中COD的浓度[7]。许海燕等[8]取生化处理后的焦化废水为实验水样(CODcr为223.9mg/L)加入Fenton试剂后,又加入絮凝剂FeCl3和助凝剂PAM,过滤除去废渣,处理后的水样中CODcr为43.2mg/L。谢成等[9]采用Fenton法对广东韶关钢铁公司焦化厂废水进行预处理,结果表明酚、苯系物、石油烃、含氮杂环有机物和多环芳烃的去除率在90 %以上。 2.1.2 吸附法 吸附法处理焦化废水是利用固体表面有吸附水中溶质及胶质的能力,吸附水中一种或多种物质从而使水得到净化。常用的吸附剂种类有很多,如活性炭、吸附树脂、磺化煤、矿渣等。活性炭是最常用也是处理水质最好的一种吸附剂。徐革联等[10]模拟工业条件,将活化污泥与水混合,分别投入焦粉、活性炭、粉煤灰,发现活性炭的吸附性能最好,焦粉次之。可用于废水的深度处理,但是活性炭需酸洗再生,再生设备容易腐蚀,运行成本高。吴健等[11]人在生物脱酚的基础上,向二沉池中投加絮凝剂,并增设焦炭、活性炭吸附塔等设备对焦化废水进行深度处理,使CODcr去除率达80%-90%。刘俊峰等[12]用南开牌H2103大孔树脂吸附处理含酚520 mg/L、COD3200mg/L的焦化废水,处理后出水酚含量≤0.5 mg/ L,COD≤80mg/L,达到国家排放标准。一些研究者通过改性粉煤灰吸附处理焦化厂含酚水的试验,酚、SS、COD和色度的去除率分别达到95 %,而且处理费用较低。 2.1.3 混凝气浮法 该方法首先采用聚合硫酸铁(PFS)破坏胶体和悬浮微粒在水中形成的稳定分散体系,使其聚集成絮凝体,然后含有大量絮凝体的混合液通过配水堰进入气浮池,利用高度分散的微小气泡作为载体去粘附水中的絮凝体,使其随气泡升到水面。产生的浮渣通过刮泥机和排泥管道自流进入污泥浓缩池。龚文琪[13]采用混凝法处理湖北鄂钢公司酚、氰废水,在运行过程中发现挥发酚、游离氰化物容易去除,而络合氰化物难以通过曝气氧化去除,COD去除效果不十分理想,但通过加入生活污水,提高废水的可生化性以后,基本能使出水COD达到国家二级排放标准。刘剑平,赵娜等[14]采用混凝气浮法处理污水的过程中,发现该系统具有结构简单、运行稳定、操作方便、溶气效率高的优点,但是该系统也存在当进水中的悬浮物过高时,出水中悬浮物浓度升高,造成释放器堵塞。 2.1.4 A/O工艺 A/O工艺是目前焦化污水脱氮的主要工艺。A/O工艺既能脱氮也能将废水中大部分的有机物降解去除,是一种较为理想的废水处理技术,但是对于某些有毒有害物质(氰化物及氨氮等)的降解能力差,常常难以达到国家允许的排放标准[15]。现许多处理厂对A/O工艺进行改进形成的A2/O工艺的可行性研究表明,A2/O工艺比A/O工艺脱氮效果更好,但是基建投资比原来高30 %左右,操作费用也要增加60 %~80 %[16]。 2.1.5 SBR工艺 普通活性污泥法对焦化废水中的氨氮降解效果较差,处理后出水NH3-N在200mg/L左右,COD在300mg/L左右,这两项指标均不能达到排放标准[17]。而且普通活性污泥系统存在抗冲击能力差,生长缓慢,操作不稳定等缺点。SBR工艺是一种活性污泥法新工艺,它在同一反应器内,通过进水、反应、沉淀、出水和待机5个阶段,循序完成缺氧、厌氧和好氧过程,实现对水的生化处理。钟梅英[18]对SBR工艺处理焦化废水进行了研究,结果表明,进水COD为650~1900mg/L,氨氮为150~330mg/L时,去除率分别达到80%和70%以上,且处理费用较低。LI Bing等[19]用厌氧序批式反应器来预处理焦化废水,结果表明,在tf/tr为0.5,搅拌强度为0.025L/L和间歇搅拌模式为100s/45 min的最佳条件下,有机负荷率为0.37-0.54kgCOD/(m3/d)的稳定运行期间,CODcr去除率达到38%~50%。此外,焦化废水经预处理后,BOD5/COD从0.27提高到0.58。 2.2 焦化废水处理新技术 2.2.1 催化湿式氧化技术 催化湿式氧化技术一般是指在高温和高压下,在催化剂作用下,用氧气将废水中的有机物和氨氮等污染物氧化,最终转化为CO2和N2等无害物质的技术。此方法具有使用范围广、处理效率高、氧化速度快、二次污染小等优点。但由于操作在高温高压下进行,因此对工艺设备要求严格,投资费用高。所以此方法在一些发达国家已实现工业化,用于处理含氰废水、煤汽化废水、造纸黑液。杜鸿章等[20]研制出适合处理焦化厂蒸氨、脱酚前浓焦化污水的湿式氧化催化剂,该催化剂活性高、耐酸、碱腐蚀,稳定性好,适用于工业应用,对CODcr及NH3的去除率分别为99.5%和99.9%。 2.2.2 超临界水氧化法 超临界水是指温度、压力都高于其临界点的水,当温度高于临界温度374.3℃,压力大于临界压力22.1MPa时,水的性质发生了很大的变化,水的氢键几乎不存在,具有极低的介电常数和很好的扩散、传递性能,具有良好的溶剂化特征。该法在20世纪80年代初由美国学者Mdoell[21]提出,在很短的时间内,废水中99%以上的有机物能迅速被氧化成H2O、CO2、N2及其它无害小分子。 2.2.3 利用烟道气处理焦化废水 为了彻底解决焦化废水的污染问题,殷广谨等[22]人采用一种与生化法截然不同的处理技术,即利用烟道气处理焦化剩余氨水或全部焦化废水。锅炉烟道气处理工艺是废水在喷雾塔中与烟道气接触并发生物理化学反应,废水全部汽化,烟道气中SO2与废水中的NH3及塔中的O2发生化学反应生成(NH4)2SO4。吸附在烟尘上的有机污染物在高温焙烧炉或锅炉炉膛内进行无毒化分解,从而实现了废水的零排放,同时对大气环境无污染。该工艺“以废治废”,不仅处理效果好,还具有投资省、运行费用低等优点。 2.2.4 固定化细胞技术 固定化细胞(简称IMC)技术是通过化学或物理的手段将游离细胞或酶定位于限定的空间区域内,使其保持活性并可反复利用的方法。制备固定化细胞可采用吸附法、共价结合法、交联法、包埋法等。固定化细胞技术充分发挥了高效菌种或遗传工程菌在降解有机物过程中的高效降解作用,具有细胞密度高,反应迅速,微生物流失少,产物分离容易等优点,且反应过程控制较容易,污泥产生量少,同时可去除氯及高浓度难降解有机物[23]。Amanda等[24]以PVA-H3BO3包埋法固定化假单胞菌Psendomonas,在流化反应器中连续运行2周,进水酚浓度从250mg/L逐渐提高到1300mg/L,出水酚浓度可降至极低。 2.2.5 超声波法 利用超声波降解水中的化学污染物,尤其是难降解的有机污染物,是近年来发展起来的一项新型处理技术。超声波由一系列疏密相间的纵波构成,并通过液化介质向四周传播,当声能足够高时,在疏松的半周期内,形成空化核,其寿命约为0.1μs。在破裂的瞬间可产生约4000K、100MPa的局部高温高压环境,并产生速度约110m/s、具有强烈冲击力的微射流,称为超声空化。超声空化足可使有机物在空化气泡内发生化学键断裂、水相燃烧、高温分解或自由基反应。研究表明,卤代脂肪烃、单环或多环芳烃及酚类物质等都能被超声波降解[25]。 2.2.6 等离子体处理技术 等离子体处理技术是利用高压毫微秒脉冲放电等离子体对难降解有机废水进行处理。其原理是在毫微秒高压脉冲作用下,气体间隙产生放电等离子体,放电等离子体中存在大量高能电子,这些高能电子作用于水分子产生大量的水合电子、OH、O等可氧化水中有机物的强氧化基团。研究表明,焦化废水经脉冲放电处理后,大分子有机物被氧化分解为小分子,再用活性污泥法进行后续处理,废水中氰化物、酚及CODcr的去除率显著提高[26]。 2.2.7 生物强化技术 生物强化技术就是为了提高废水处理系统的处理能力,而向该系统中投加从自然界中筛选的优势菌种或通过基因组合技术产生的高效菌种,以去除某一种或某一类有害物质的方法。生物强化技术因能提高水处理的范围和能力,近年来在焦化废水治理中的应用日益重要。Donghee Park等[27]为了提高生物去除总氰化物的效率,用生物强化技术处理焦化废水。经过实验室培养可降解氰化物的酵母菌和不明确的降解氰化物的微生物,然后将微生物菌体接种入流化床反应器。结果表明:全面的氰化物生物降解的连续运行表明去除率比想象中低。王璟、张志杰等[28]研究了投加高效菌种及微生物共代谢对焦化废水生物处理的增强作用,结果表明:高效菌种能普遍提高难降解物的去除率,48h内可以比投加初级基质提高CODcr去除率47%左右,初级基质与高效菌种组合协同作用效果好,48h后焦化废水CODcr去除率达到60%左右。 2.2.8 膜生物反应器(MBR)法 MBR工艺是20世纪90年代发展起来的一种污水处理新技术,是生物处理与膜分离技术相结合形成的一种高效污水处理工艺。该技术用膜分离技术取代传统接触氧化法的二沉池,膜的高效固液分离能力使出水水质优良,处理后出水可直接回用。MBR对于COD以及NH3-N的处理效果均好于常规的A/O法[29]。但是MBR造价较二沉池高,在经济效益方面不如传统二沉池有优势,成为制约工业化应用的主要因素。 3 结论 经过不断的研究和实践,焦化废水的处理方法已经很多,且取得了较好的处理效果,但也存在一些缺点,比如外排水COD很少能够稳定达到国家一级排放标准,出水指标不稳定。随着环保要求的日益严格,单靠一种处理方法难以达到理想的效果。利用多种方法的协同作用处理焦化废水,可发挥各自的优点,有助于更进一步地提高处理效率。因此,通过多种方法的有机组合、联用,最终研发出处理效果好、投资省、运行费用低、操作简单、易于控制的焦化废水处理新技术,不但可以为企业降低新水消耗量,节约生产成本,维护周边的生态环境,而且还为履行国家的节能减排战略,以及对生态环境的保护和焦化企业的可持续发展具有重要的现实意义。
  • 《电镀园区含镍废水物化处理工程实例》

    • 来源专题:水体污染治理
    • 编译者:王阳
    • 发布时间:2019-07-11
    • 摘 要: 以某电镀废水集中处理工程为实例,介绍了含镍废水的处理技术、工艺、构筑物参数 及运行效果。通过应用高级氧化破络技术、络合捕集技术以及管式微滤膜( TMF) 分离技术,构建了电镀废水重金属稳定达标处理关键技术体系,实现了出水在电镀含镍废水的单独监控池达到《电镀污染物排放标准》( GB 21900—2008) 的表 3 标准。该工艺技术体系能适应水量变化,运行稳定,处理效果好,自动化程度高,具有良好的环境效益、社会效益及经济效益。 电镀工艺中镍的镀种类型较多,应用面广,而在电镀镍工艺中常加入各种络合物,镍始终处于络合态,有利于提高电镀效果。目前络合物种类以有机物为主,主要包括羧酸类、氨基醇类、氨基羧酸类、无机多磷酸类和有机磷酸类[1],而络合物的存在给后续处理带来了较大的难度。目前,《电镀污染物排放标准》( GB 21900—2008) 表 3 标准要求含镍废水预处理出水监测点一类污染物 Ni2+≤0. 1 mg /L,这对于成分复杂、络合复杂、水质波动大的电镀废水而言,具有较大的挑战性。考虑项目投产后需长期稳定达标,在工程工艺设计阶段即需充分考虑工艺的达标保障性。以某电镀废水集中处理工程中含镍废水的处理工艺应用为例,介绍了基于高级氧化破络技术、络合捕集技术以及管式微滤膜( TMF) 分离技术的重金属镍稳定达标关键技术的集成体系与示范应用。 1 工程概况 某电镀产业园总用地面积为 7. 10 hm2,包含 17幢电镀厂房、3 幢办公楼、1 座仓库、配套 1 座园区集中式废水处理中心。 园区配套的电镀废水集中处理工程设计规模为5 000 m3/d,占地面积为 5 333 m2,设计运行时间为20 h /d,处理规模为 250 m3/h。土建工程一次性建设实施,设备工程分两期实施,一期工程配置规模为2 500 m3/d( 125 m3/h) 。根据进水水质将废水分成7 股,分别进行处理。 2 废水处理工艺 2. 1 工艺流程 针对废水水质特点及设计排放标准,确定废水处理工艺流程。 2. 2 工艺说明 将电镀园区中不同电镀车间的镀镍工序产生的漂洗水集中收集,通过管道进入调节池,考虑到有部分 Cr6+混入,一级反应池组先进行 Cr6+还原,然后加碱和 PAM 絮凝反应,进入一级沉淀池,去除部分镍和全部的铜和铬,出水进入二级反应池组,通过加入高效的破络合药剂对镍的络合物进行氧化,消除强络合态的镍,同时加入高络合能力的重金属捕捉剂,确保镍能完全去除,然后进入 TMF 膜分离系统,通过膜分离悬浮态的重金属镍,实现固液分离,膜出水进入镍监控池,检测达标后进入后续处理系统,若不达标,则进入应急反应池,再返回含镍预处理系统进行处理。 2. 3 主要应用技术 ① 基于高级氧化破络的重金属稳定达标技术 电镀废水成分复杂,往往含有大量的重金属物质、有机助剂等。在电镀过程中,因为镀层质量控制的需要,重金属离子往往以络合物形式存在,从而在电镀过程中缓慢释放金属离子进行沉积,提升镀层质量; 然而在废水排放和处理过程中,因为这样一些络合物的存在,使得镍的去除难度加大,单纯的化学沉淀法难以实现重金属的有效去除,因而如何破除络合物、实现金属离子的释放就成为重金属去除过程中的关键技术。高级氧化技术在应用过程中产生的羟基自由基( ·OH)[2]或硫酸盐自由基[3]具有强氧化作用,能有效氧化与镍结合的络合物或螯合物,将强络合态镍转化为弱络合态镍或离子态镍[4],然后通过重补剂竞争络合或沉淀分离,达到去除镍的目的。本项目采用自主研发的破络合剂,针对电镀废水中存在的络合物具有普适性,能实现络合物的有效去除。 ② 基于络合捕集的重金属稳定达标技术 电镀废水处理过程中,重金属离子主要通过与外加药剂( 氢氧化钠、氢氧化钙、硫化钠等) 形成氢氧化物、硫化物沉淀等形式,从废水中固液分离,最终转化为固态污染物,但是对于大部分重金属,其氢氧化物溶度积常数( Ksp) 比较大,使得其去除效果比较差,难以满足目前日益严格的出水排放要求。另外,电镀废水中常常含有一些络合剂,其稳定性高,简单加入氢氧化钠、氢氧化钙难以沉淀这部分络合态重金属离子。重金属捕集剂是一种与重金属离子强力螯合的化工药剂,能在常温和很宽的 pH 值范围内,与废水中的 Cu2+、Ni2+、Zn2+等重金属离子进行化学反应,并在短时间内迅速生成不溶性、低含水量、容易过滤去除的絮状沉淀,从而达到去除重金属离子的目的,确保废水达到排放标准[5,6]。目前,根据现有电镀废水中络合物的种类,并结合高级氧化破络技术,自主合成的重补剂可实现镍的达标。 ③ 基于 TMF 分离的重金属稳定达标技术 目前对于电镀废水以物化处理法为主,通常采用化学沉淀法,基本工艺组合为反应系统 + 分离系统。目前常见的固液分离方式有沉淀、气浮和膜分离,其中沉淀法具有通用性强、造价低、易管理等特点,应用广泛; 气浮法则具有容易设备化、占地小、分离效率高等特点,在一些小规模的电镀污泥处理工程中也得到应用。但是气浮法和沉淀法都具有一定的不稳定性,容易出现浮泥、跑泥等现象,造成出水水质波动,重金属超标风险大。膜分离法具有分离效果好、系统稳定等特点,尤其是能够确保出水 SS浓度非常低; 另外,在进行膜分离的同时,还能实现污泥的浓缩、污泥高效吸附等功能,进一步提升出水水质和后续污泥脱水设备的效率,因此在电镀废水处理中具有广阔的应用前景。本项目采用的管式微滤膜以多孔高分子材料作为分离介质,采用低压( 0. 07 ~ 0. 7 MPa) 运行膜过滤,用以分离液体中的高浓度悬浮固体; 分离时采用错流过滤方式,固液混合物在压力作用下在膜表面错流流动; 固体颗粒在错流状态下在固液混合物中不断浓缩,不断在膜表面堆积。TMF 膜过滤系统具有显著的优点: 可以绝对去除尺寸大于膜孔径的固体物,去除效果非常稳定; 不需要投加絮凝剂等聚合物,节约药剂,降低污泥产量,提升污泥资源化利用价值; 自动随时开/停机,自动化程度高; 超微滤过滤精度高,不需要进后处理过滤器,可以直接和反渗透等中水回用设备联用。