《科学家发现了铀化合物的超导特性》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-11-20
  • 俄罗斯、中国和美国的科学家预测并在实验中发现了新型铀氢化合物,并预测其中一些铀氢化合物具有超导特性。他们的研究结果发表在Science Advances上。

    1911年,荷兰物理学家Heike Kamerlingh Onnes领导的科研小组发现了超导现象。超导性是指当材料冷却到某一特定温度时,材料中的电阻完全消失,从而导致材料出现完全抗磁性效应。最初,一些基本的金属(例如铝和汞)在比绝对零度(-273℃)高一些的温度下展现出了超导性。而对科学家们来说,他们对所谓的高温超导体特别感兴趣。即超导体在不那么极端的温度下具有超导性。最高温度的超导体是在-183 ℃下呈现超导性,因此需要不断对材料进行冷却。在2015年,一种稀有的硫氢化物(H3S)创造了新的高温超导记录,温度达到-70 °C,但这却是在1,500,000个标准大气压下实现的。

    Artem R.Oganov教授领导的物理科研小组预测,大约低于50,000个标准大气压下可以产生14种新的铀氢化合物,其中只有UH3被人们所熟知。它们包括富含氢的化合物,例如UH7和UH8,科学家们同样预测它们是具有超导性的。这些化合物中有许多是由美国华盛顿卡内基研究所(美国)和中国科学院固体物理研究所的 Alexander Goncharov教授从实验中获得的。计算表明,温度最高超导体是UH7,它在-219℃的温度下显示出超导性-通过掺杂来进一步提高的温度。

    MIPT计算材料探索实验室的研究负责人Artem R.Oganov讲 “H3S被发现之后,科学家们开始急切地寻找其他非金属的超导氢化物,例如硒、磷等。研究表明,金属氢化物和非金属氢化物在高温超导性方面具有相当的潜力”。

    Artem R.Oganov说“我们研究结果的两个亮点是,高压产生了大量的氢化物,其中它们大部分都不属于古典化学,而这些氢化物实际上是可以在非常低的压力下成为超导体的,甚至可能是在一个标准大气压下”。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=306588
相关报告
  • 《科学家发现产生高温超导体的新方法》

    • 来源专题:重大科技基础设施领域知识集成服务平台
    • 编译者:魏韧
    • 发布时间:2019-06-27
    • 20世纪80年代,铜氧化物高温超导体的发现推翻了一种广为流行的理论,即超导体材料仅在约30开尔文(或零下406华氏度)的极低温度下无电阻。几十年来,研究人员一直在关注100开尔文(零下280华氏度)以上的铜酸盐超导体研究。现在美国能源部劳伦斯伯克利实验室的科学家找到了这一问题的答案——电子自旋。相关成果将发表在12月13日的《科学》杂志上。 1、在旋转方式中添加电子自旋 每一个电子都像一个指向某个方向的微小磁铁。大多数超导体材料中的电子似乎都遵循着自己的旋转方向。它们的电子不是指向同一个方向,而是不规则地向某一个方向旋转——有的向上,有的向下,有的向左或向右。 当开发新的材料时,科学家们会观察材料的电子自旋。但是,当制造超导体时,凝聚态物理学家传统上并不关注自旋,因为传统观点认为这些材料的独特性是通过两个电子相互作用的方式,即“电子关联”形成的。但该研究用一种称为SARPES(s)的技术,发现一些超导体材料中存在电子自旋的特殊模式。 2、高温超导体的新图谱 材料在高于预期的温度下,或远低于零华氏度的极冷温度下出现超导,是因为只有在这样的条件下才能在没有任何阻碍地输送电子,此时电子能够同步运动,而不会被摇摆的原子撞击,进而产生电阻。在这类特殊的高温超导体材料中,铜酸盐的表现最好,一些研究人员相信,铜酸盐有可能成为制作新型超高效电线的材料。 凝聚态物理学家在研究的超导材料中发现了电子关联。其实还存在另一种电子相互作用方式,“自旋-轨道耦合”,即电子的磁矩与材料中的原子相互作用。许多人认为,与“电子关联相比”,铜酸盐超导体中的“自旋-轨道耦合”很弱,所以常常被忽略。 3、用SARPES发现电子自旋 SARPES探测器由Lanzara、Zahid Hussain和Chris Zzwiak共同开发。科学家用其探测电子的关键特性,如价带结构。科学家使用SARPES与ALS的10.0.1光束,探测到电子的自旋速度,发现bi-2212独特的自旋模式,即“非零自旋”。
  • 《俄罗斯科学家发现了将食物垃圾转化为生物燃料的方法》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2017-11-28
    • 2017年11月19日 在俄罗斯,来自Skoltech和俄罗斯科学院高温联合研究所的科学家们提出了一种新的方法,通过热液液化来将食物垃圾转化为生物燃料——一种将湿生物转化为石油的热解聚过程。其他研究人员使用碳水化合物发酵或脂肪转化为生物燃料生产,但由于他们的生物燃料中只有一部分被转化为燃料,剩下的部分仍待处理,并不能解决食品浪费问题。 为了解决食品浪费问题,Skoltech的科学家认为,水热液化是一种独特的节能和普遍的选择。特别地,这种方法使生物燃料可以直接从湿生物质中产生。值得注意的是,在干燥过程中,最好是把湿的生物量转换成干燥过程,因为干燥过程消耗了相当多的能量。他们尝试了各种各样的食物垃圾,包括帕尔马干酪、火腿和苹果。由于水热液化所产生的产物分子组成的知识,将使科学家能够开发出最优的方法,以便他们随后的加工制造出适合汽车的燃料。