《34万恒星DNA被用于寻找类日恒星》

  • 来源专题:天文仪器与技术信息
  • 编译者: zwg@niaot.ac.cn
  • 发布时间:2019-01-20
  • Using the Anglo-Australian Telescope (AAT), an Australian-led group of astronomers working with European collaborators has revealed the “DNA” of more than 340,000 stars in the Milky Way, which should help them find the siblings of the Sun, now scattered across the sky.

    This is a major announcement from an ambitious Galactic Archaeology survey, called GALAH, launched in late 2013 as part of a quest to uncover the formulation and evolution of galaxies. When complete, GALAH will investigate more than a million stars.

    The GALAH survey used the HERMES spectrograph at the Australian Astronomical Observatory’s (AAO) 3.9-metre Anglo-Australian Telescope near Coonabarabran, NSW, to collect spectra for the 340,000 stars.

    The GALAH Survey today makes its first major public data release.

    The ‘DNA’ collected traces the ancestry of stars, showing astronomers how the Universe went from having only hydrogen and helium - just after the Big Bang - to being filled today with all the elements we have here on Earth that are necessary for life.

    “No other survey has been able to measure as many elements for as many stars as GALAH,” said Dr. Gayandhi De Silva, of the University of Sydney and AAO, the HERMES instrument scientist who oversaw the groups working on today’s major data release.

    “This data will enable such discoveries as the original star clusters of the Galaxy, including the Sun's birth cluster and solar siblings - there is no other dataset like this ever collected anywhere else in the world,” Dr. De Silva said.

    Dr. Sarah Martell from the UNSW Sydney, who leads GALAH survey observations, explained that the Sun, like all stars, was born in a group or cluster of thousands of stars.

    “Every star in that cluster will have the same chemical composition, or DNA - these clusters are quickly pulled apart by our Milky Way Galaxy and are now scattered across the sky,” Dr. Martell said.

    “The GALAH team’s aim is to make DNA matches between stars to find their long-lost sisters and brothers.”

    For each star, this DNA is the amount they contain each of nearly two dozen chemical elements such as oxygen, aluminium, and iron.

    Unfortunately, astronomers cannot collect the DNA of a star with a mouth swab but instead use the starlight, with a technique called spectroscopy.

    The light from the star is collected by the telescope and then passed through an instrument called a spectrograph, which splits the light into detailed rainbows, or spectra.

    Associate Professor Daniel Zucker, from Macquarie University and the AAO, said astronomers measured the locations and sizes of dark lines in the spectra to work out the amount of each element in a star.

    “Each chemical element leaves a unique pattern of dark bands at specific wavelengths in these spectra, like fingerprints,” he said.

    Dr. Jeffrey Simpson of the AAO said it takes about an hour to collect enough photons of light for each star, but “Thankfully, we can observe 360 stars at the same time using fibre optics,” he added.

    The GALAH team have spent more than 280 nights at the telescope since 2014 to collect all the data.

    The GALAH survey is the brainchild of Professor Joss Bland-Hawthorn from the University of Sydney and the ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) and Professor Ken Freeman of the Australian National University (ANU). It was conceived more than a decade ago as a way to unravel the history of our Milky Way galaxy; the HERMES instrument was designed and built by the AAO specifically for the GALAH survey.

    Measuring the abundance of each chemical in so many stars is an enormous challenge. To do this, GALAH has developed sophisticated analysis techniques.

    PhD student Sven Buder of the Max Planck Institute for Astronomy, Germany, who is the lead author of the scientific article describing the GALAH data release, is part of the analysis effort of the project, working with PhD student Ly Duong and Professor Martin Asplund of ANU and ASTRO3D.

    Mr. Buder said: “We train [our computer code] The Cannon to recognize patterns in the spectra of a subset of stars that we have analysed very carefully, and then use The Cannon’s machine learning algorithms to determine the amount of each element for all of the 340,000 stars.“ Ms. Duong noted that “The Cannon is named for Annie Jump Cannon, a pioneering American astronomer who classified the spectra of around 340,000 stars by eye over several decades a century ago – our code analyses that many stars in far greater detail in less than a day.”

    The GALAH survey’s data release is timed to coincide with the huge release of data on 25 April from the European Gaia satellite, which has mapped more than 1.6 billion stars in the Milky Way, making it by far the biggest and most accurate atlas of the night sky to date.

    In combination with velocities from GALAH, Gaia data will give not just the positions and distances of the stars, but also their motions within the Galaxy.

    Professor Tomaz Zwitter (University of Ljubljana, Slovenia) said today’s results from the GALAH survey would be crucial to interpreting the results from Gaia: "The accuracy of the velocities that we are achieving with GALAH is unprecedented for such a large survey."

    Dr. Sanjib Sharma from the University of Sydney concluded: “For the first time we’ll be able to get a detailed understanding of the history of the Galaxy.”

    The AAO is a division of the Department of Industry, Innovation and Science.

    The ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) is a $40m Research Centre of Excellence funded by the Australian Research Council (ARC) and six collaborating Australian universities - The Australian National University, The University of Sydney, The University of Melbourne, Swinburne University of Technology, The University of Western Australia and Curtin University.

    Images

    Caption: HERMES, the new spectrograph being built at the AAO, uses volume phase holographic (VPH) gratings to provide various optimised spectra in blue, green and red light and a fourth band in infra-red light. HERMES spectra allows astronomers to study the chemical makeup of stars to understand their formation and evolution. A spectrum of sun shows many dark features because of chemical elements in sunlight.

    Credit: N.A. Sharp, NOAO/NSO/Kitt Peak FTS/AURA/NSF

    This image is available at https://www.aao.gov.au/files/press/solar_noao_credit.jpg

    Caption: A schematic of the HERMES instrument showing the light path of how star light from the telescope AAT is split into four different channels.

    Credit: Australian Astronomical Observatory (AAO)

    Note: This is also available as a video (https://drive.google.com/drive/folders/1kjbKBXQTvxtaJdrkVNtn9smWsDvmvR2L)

    This image is available at https://www.aao.gov.au/files/public/images/hermes_light_path_0.png

    Videos

    High definition downloads at https://drive.google.com/drive/folders/1kjbKBXQTvxtaJdrkVNtn9smWsDvmvR2L (incl. Additional video: The HERMES lightpath. Credit: AAO)

    Rainbow fingerprints (Credit: AAO and Dr Amanda Bauer) https://www.youtube.com/watch?v=2bVGr1MV2-8

    Sky over the AAT (Credit: Dr Ángel R. López-Sánchez (AAO/MQ)) https://www.youtube.com/watch?v=6mRMj52V4DM

    2df night at the AAT (Credit: Dr Ángel R. López-Sánchez (AAO/MQ)) https://www.youtube.com/watch?v=XKoWQtDd14c

  • 原文来源:https://www.aao.gov.au/news-media/media-releases/340000-stars%E2%80%99-dna-interrogated-search-sun%E2%80%99s-lost-siblings
相关报告
  • 《古代恒星揭示了地球与其他行星的相似之处》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-10-21
    • 加州大学洛杉矶分校的一项新研究表明,类似地球的行星可能在宇宙中很常见。天体物理学家和地球化学家团队提出了新证据,证明地球不是唯一的。这项研究于10月18日发表在《科学》杂志上。 加州大学洛杉矶分校地球化学和宇宙化学教授爱德华·杨说:“我们刚刚提高了许多岩石行星像地球的可能性,并且宇宙中有很多岩石行星。” 由加州大学洛杉矶分校地球化学和天化学研究生亚历山德拉·道尔(Alexandra Doyle)领导的科学家们开发了一种新方法,可以详细分析太阳系以外行星的地球化学。 Doyle通过分析环绕六颗白矮星的小行星或岩石行星碎片中的元素来做到这一点。 扬说:“我们正在研究其他恒星的岩石中的地球化学,这几乎是闻所未闻的。” 加州大学洛杉矶分校(UCLA)天体物理学和行星科学副教授希尔克·施利希廷(Hilke Schlichting)说:“要了解太阳系外行星的组成非常困难。” “我们使用了可能的唯一方法-我们开创的方法-确定太阳系外部岩石的地球化学。” 白矮星是普通星的密集,燃烧残骸。它们强大的引力使碳,氧和氮等重元素迅速沉入其内部,而望远镜无法检测到这些重元素。杜伊研究的距离最近的白矮星距离地球约200光年,最远的距离是665光年。 多伊尔说:“通过观察这些白矮星及其大气中存在的元素,我们观察到了绕白矮星运行的人体中的元素。”她说,白矮星的巨大引力将绕其运行的小行星或行星碎片切碎,并且该物质坠落到白矮星上。 “观察一个白矮星就像对它在太阳系中吞噬的内容进行尸检一样。” Doyle所分析的数据主要是通过望远镜收集的,该望远镜主要是从W.M.夏威夷的凯克天文台(Keck Observatory)是太空科学家以前为其他科学目的而收集的。 多伊尔说:“如果我只看一颗白矮星,我会期望看到氢和氦。” “但是在这些数据中,我还看到了其他物质,例如硅,镁,碳和氧-这些物质是从环绕它们的天体上附着到白矮星上的。” 杨说,当铁被氧化时,它与氧共享电子,在它们之间形成化学键。他说:“这被称为氧化,当金属变成生锈时,您会看到它。” “氧气从铁中窃取电子,产生氧化铁而不是金属铁。我们测量了这些撞击白矮星的岩石中被氧化的铁的量。我们研究了金属生锈的程度。” Young说,来自地球,火星和我们太阳系其他地方的岩石在化学成分上相似,并且含有惊人高水平的氧化铁。他说:“我们测量了这些撞击白矮星的岩石中被氧化的铁的量。” 太阳主要由氢组成,而氢的作用与氧化相反,氢会增加电子。 研究人员说,岩石行星的氧化对其大气,其核心以及在其表面形成的岩石种类具有重大影响。扬说:“地球表面发生的所有化学反应最终都可以追溯到行星的氧化态。” “我们拥有海洋和生命所必需的所有成分这一事实可以追溯到被氧化的行星。岩石控制着化学反应。” 直到现在,科学家们仍未完全了解岩石系外行星的化学性质是否与地球相似或相异。 加州大学洛杉矶分校团队分析的岩石与来自地球和火星的岩石有何相似之处? “非常相似。”多伊尔说。 “就其氧化铁而言,它们像地球,也像火星。我们发现岩石到处都是岩石,地球物理和地球化学非常相似。” 扬说:“为什么太阳系中的岩石被如此氧化一直是个谜。” “这不是您所期望的。一个问题是,其他恒星周围是否同样如此。我们的研究是这样。对于在宇宙中寻找类似地球的行星来说,这预示着很好的预兆。” 白矮星是科学家分析的罕见环境。 研究人员研究了岩石中最常见的六个元素:铁,氧,硅,镁,钙和铝。他们使用数学计算和公式,因为科学家无法研究白矮星的实际岩石。道尔说:“我们可以用数学方法确定这些岩石的地球化学,并将这些计算结果与我们从地球和火星得到的岩石进行比较。”他的地质和数学背景。 “了解岩石至关重要,因为它们揭示了地球的地球化学和地球物理学。” 施利希廷说:“如果外星岩石的氧化量与地球相似,那么可以得出结论,地球具有与地球相似的板块构造和相似的磁场潜能,而地球被广泛认为是生命的关键成分。” “这项研究是能够对我们太阳系以外的物体进行这些推断的一个飞跃,并表明很可能存在真正的地球类似物。” 扬说,他的部门既有天体物理学家,也有地球化学家。 他说:“结果是,我们正在对太阳系外部的岩石进行真实的地球化学研究。大多数天体物理学家都不愿意这样做,而且大多数地球化学家都不愿将其应用于白矮星。” 该研究由美国国家航空航天局资助。
  • 《我国首次揭示宇宙最古老恒星钙丰度之谜》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-10-28
    • 北京时间10月27日,国际顶级学术期刊《Nature》(《自然》)发表我国锦屏深地核天体物理实验项目最新研究成果,该成果将关键核天体反应19F(p,γ)20Ne的测量范围推进到世界最低能区,国际首次揭示了宇宙最古老恒星中的钙丰度之谜,进一步揭示了古老恒星的演化命运,进一步证明了我国已全面具备了进行深地核天体物理研究的能力。 对此,诺贝尔物理学奖获得者、詹姆斯·韦布太空望远镜首席科学家约翰·马瑟来函表示,“祝贺你们的新测量,我觉得它们相当重要。”《自然》审稿人认为这是一个巨大的实验成功,为未来核天体物理学研究提供了新途径,这项研究结果会引起核天体物理学界的强烈兴趣。 中核集团原子能院研究员柳卫平、北京师范大学教授何建军和美国圣母大学教授麦克·韦瑟为论文通讯作者。该文章也是《自然》杂志发表的第一篇我国核物理装置实验成果文章。 宇宙中已知最古老的恒星中的钙丰度起源问题,对于很多科学家来说至今仍是未解之谜。这些恒星也被称为第一代星或原初恒星。此前有理论认为,恒星中的钙可能来源于19F(p,γ)20Ne 突破反应,然而该反应在天体物理感兴趣的伽莫夫能区尚无实验数据,继而导致恒星演化模型难以解释天文观测数据。 中国锦屏地下实验室为世界最深地下实验室,宇宙射线通量可降到地面的千万分之一至亿分之一,有利于开展稀有反应事件的精确测量和研究。特别是中国锦屏地下实验室为研究19F(p,γ)20Ne反应提供了本底极低的绝佳测量环境,能避免宇宙射线本底的干扰,对该反应进行直接精确测量。 我国锦屏深地核天体物理实验项目就位于锦屏地下实验室二期,由中国原子能科学研究院牵头,联合中国科学院近代物理研究所、北京师范大学、清华大学、雅砻江流域水电开发有限公司等科研单位于2020年底建成出束。2021年5月28日,习近平总书记出席两院院士大会和中国科协第十次全国代表大会,在谈及“战略高技术领域取得新跨越”时,提到了“世界最强流深地核天体物理加速器成功出束”。2021年12月底,这台加速器上产生的首批实验成果正式发布,标志着我国核天体物理实验研究步入国际先进行列,中国成为世界上第三个具备开展深地核天体物理研究的国家。 据原子能专家介绍,我国锦屏深地核天体物理实验项目团队成功研制出目前耐辐照能力最强的19F注入靶,并利用锦屏加速器提供的强流质子束,触碰到了第一代星感兴趣的伽莫夫能区,并发现了一个新的共振。此新共振的发现使得19F(p,γ)20Ne的反应率比之前国际权威数据库中的推荐值大了5到7倍,并将反应率不确定度从几个数量级缩小至50%左右,极大地降低了该反应率在天体网络计算中所引入的误差。 与此同时,该团队与天体物理学家合作研究了该反应率在第一代星中的影响,计算表明19F(p,γ)20Ne反应突破出去的概率比之前预想的要大7倍左右,导致生成例如钙类重物质的概率,比之前预计的要大很多,从而解释了最古老恒星中观测到的钙丰度问题。值得一提的是,在近期发射升空的JWST的关键科学目标之一,即是对宇宙中最古老的第一代星和星系的探测,目前已经观测到一批古老的恒星群。因此,本工作为研究JWST未来的观测结果提供了可靠的核物理输入量。