《《Science》文章倾覆“细胞分裂”基因表达理论》

  • 来源专题:转基因生物新品种培育
  • 编译者: Zhao
  • 发布时间:2017-09-26
  • 生物通报道:人们长期以来一直认为分裂期基因是“沉默的”,不会被转录成蛋白质或调控分子。一直以来有一个问题得不到解答:细胞分裂结束后,基因们又是如何被重新激活的?宾州再生医学研究所所长、细胞和发育生物学系教授Joseph Leidy作为通讯作者发表在《science》上的文章对这个问题进行了深入研究。该文章的出发点是细胞如何让“安静”的基因状态转变为全面激活状态,并及时开启整个细胞的身份调制。文章一作博士生Katherine C. Palozola找到了一种检测分化中活细胞基因活性检查的新方法。她标记人类肝脏细胞系的尿嘧啶(FITC-UTP labeling),然后就观察到了细胞复制时仍在活跃的基因。EU-RNA-Seq和FITC-UTP 标记揭示有丝分裂过程基因普遍发生了转录。

相关报告
  • 《隐藏的癌细胞分裂密码》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-12-01
    •  Hollings癌症中心的科学家们描述了一种独特的细胞分裂形式:一些细胞根本不需要一些必须分子,就能进行细胞分裂。 如欲了解新一代测序技术在癌症研究中的最新应用,请点击此处索取更多资料。   南卡罗来纳医科大学Hollings癌症中心的科学家在《Genes and Development》发文,解释了肝细胞损伤后如何再生,意外揭开了癌症的发病机理以及癌细胞如何进化附加突变,从而加速生长和扩散。 文章作者包括Hollings癌症中心主任Gustavo Leone博士和其实验室的Takayuki Okano-Uchida博士等人。 Uchida解释说,在胚胎发育期间,必须进行细胞分裂,替代死亡或受损细胞。细胞分裂的一个重要组成部分是精确地复制每个染色体,为每个细胞提供相同的DNA,我们称之为DNA复制。在该过程中发生的错误可能导致染色体异常拷贝或有害突变,这些细胞就有可能导致癌症。 “我们是多细胞生物,”Uchida说。“为了制造多细胞生物,细胞复制是很重要的,所以DNA复制对我们非常重要。” 为了正确地划分和确保DNA复制,细胞必须在每个染色体的特定位置启动这个过程,生物学称其为“复制起点”。 启动起点以启动DNA复制整个过程,就像赛车前启动发动机一样,控制该过程的一组分子被称为“起点复制复合体(origin replication complex)”,它们与每条染色体中特定DNA位置结合,帮助细胞识别从哪里起步。科学家们认为,正是有了它们,才有了精准的完美基因组。 然而,Uchida和同事却发现,虽然大多数细胞需要一部分起点复制复合体(被称为ORC1)来识别DNA复制起点,而肝脏和胎盘细胞往往不需要ORC1。这些细胞属于少部分复制DNA但不分裂的细胞,可以形成一个较大的、包含正常数量2倍DNA的细胞。该过程被称为内循环(endocycle),可能发生多次,导致细胞内部DNA是正常DNA量的许多倍。 研究人员发现,在肝脏中,分裂细胞的ORC1表达量很高,而在衰老动物模型中,肝细胞开始内循环,ORC1水平下降,表明内循环的DNA复制可能不需要ORC1。为了验证这一观点,研究人员将肝细胞的ORC1删除,发现缺乏ORC1的肝细胞内循环明显提前。 “人们普遍认为ORC1对所有形式的DNA复制都必不可少,”Uchida说。“我们的这一发现显得尤为关键。” 未来,他们将关注ORC1和异常DNA复制对肿瘤细胞的作用,根据Uchida的说法,癌细胞似乎利用了类似内循环的过程快速对治疗产生抗性。事实上,某些癌症的ORC1水平很低,但是肿瘤依然生长迅速。“缺乏ORC1的细胞积累的突变比正常细胞多,着当然可以促进癌细胞的生长。” Uchida认为,实验结果可以从小鼠延伸到人类,下一步他们将在人类肝细胞系中检测这些结果。
  • 《科学家首次在细胞外重构细胞分裂过程》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-06-03
    • 在最近一项研究中,科学家们通过构建细胞外模型,揭示了细胞分裂的新机制。相关结果于5月21日发表在《PNAS》杂志上。该研究有助于了解细胞开展日常活动的物理过程,并可望有朝一日带来医学上的突破。 “理解细胞如何分裂是试图创造生命的基础,这也是我们数百年来一直在努力尝试的东西,”研究资深作者Gardel说。 细胞在身体中移动,一些最复杂的运动发生在细胞内部,其中包括细胞分裂。这一过程的关键参与者之一是肌动蛋白——一种帮助细胞自我组装的重要元件。对此,作者通过尝试在细胞外构建“细胞”模型,了解肌动蛋白作用背后的物理过程。 作者通过分离得到肌动蛋白,发现它们形成呈杏仁状的“液滴”结构。当向其中添加肌球蛋白(肌肉中常见的“运动”蛋白质)时,它们会自发地向液滴两端以及中心聚集,并将液滴分成两段。 当处在液滴中时,棒状肌动蛋白分子喜欢平行排列以最小化冲突,形成杏仁形状。较长的肌球蛋白分子更喜欢聚集在中心,以便其仍能保持与肌动蛋白平行。但随着更多的肌球蛋白聚集,它们开始粘在一起,形成倾斜而非保持平行的簇。这是科学家们首次深入详尽地了解一个细胞如何完成这项重要任务。