《NOAA发布2016年首席科学家年报》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: 马丽丽
  • 发布时间:2016-12-29
  • NOAA于2016年12月12日发布了首席科学家年报。报告概述了NOAA的综合研究发展,包括机构研究策略和研究交叉的逻辑。该年报也是首次公布NOAA在研发、科学诚信和员工发展方面取得的进展。NOAA提供的服务包括每日天气预报、重大的风暴警报、气候监测、渔业管理、沿海恢复和海洋商业等,并且支持美国经济发展,影响美国国内生产总值三分之一以上。NOAA的专业科学家使用高尖端科技仪器,为公民、规划者、应急管理者和其他决策者提供可靠的信息,平均到每个美国人每天的费用还不到5美分。

    该报告包括4个方面内容:NOAA的研究逻辑;5个主题章节的研究活动,包括53个小节;NOAA研究的综合评估分析;NOAA科学工作的质量评估。

    NOAA的研究逻辑主要解释NOAA为什么进行科学研究;进行什么样的科学研究;在科学研究中投入了什么;NOAA进行研究的指导原则和预算;NOAA运营、应用、商业化和其他方面的问题。

    NOAA主要研究活动包括5个方面:

    (1)地球系统过程综合系统和预测:厄尔尼诺带来新的天气变化;用于提高飓风预报的无人机系统;提高天气预报及时性和分辨率的模型改进;优化可再生能源的风能预测研究;飓风涌浪预测以防止沿岸洪水灾害;地球上最后一个二氧化碳浓度超过400ppm的地方;有害藻华预测;推进蓝碳研究;全球气候模式揭示海洋条件的变化;鱼类物种对大西洋海岸气候变化的响应;温暖的血液使月鱼成为捕食者。

    (2)环境观测和数据:使用DNA研究海洋生物的新前沿;珊瑚礁研究展望以及漂白事件的预测;使用无人机系统评估鲸鱼健康;利用电子监测改善商业渔业;利用海洋传感器对海洋哺乳动物进行卫星标记;评估海豹对无人机系统的响应;无人机和飞行员支持的搜索和救援;提高海岸线绘图技术;利用无人机获得的重力数据支持洪灾地区;提供更多的航空图片已提供极端天气前后的观测;低成本海水温度传感器研发;利用公民科学提高和改善全球天气预报;创建公众科学网站;增强卫星监测全球海平面的能力;天气预报改革的关键点;未来应用于天气预报的卫星;通过合作伙伴获得NOAA数据的可访问性;新一代卫星增强了观测能力,海洋勘探活动的新发现

    (3)科学决策、风险评估、和风险沟通:渔业可持续管理与抵抗不断变化的气候;加州沿岸生态系统对海洋酸化的脆弱性;增强美国水产养殖业的工具;应对气候变化挑战的工具;国家天气预报有助于建立快速反应的社区;预测环境威胁的连续性;研究历史数据并进行潜在洪水预测;制作海洋可再生能源的发展路线图;促进基于自然海岸线的海岸保护;鱼类和贝类的气候脆弱性评估;海洋噪声对海洋生物的影响;海洋人类声波制导技术;,还有10个案例

    (4)水资源及灾害预测:提高全国水资源预测能力;监测降水能力以提高洪水预报水平;更好的检测有害藻华毒素;原位水样实时监测能力。

    (5)北极:北极勘探技术创新;海冰预测;分布式生物观测站;楚科奇海哺乳动物监测;北方海狗觅食行为监测;漏油事件后深入调查威廉王子湾渔业;春季北极云在秋季海冰范围预测中的作用;气候预测中心的季节性海冰预测。

    研究综合评估分析:该报告提供了迄今为止NOAA最全面的的研究评估,预测了在7个关键领域的生产力和影响力。2011年-2015年期间,NOAA科学家在144个研究领域撰写或者共同撰写了10663篇文章。

    科学劳动力的评估:创造性和有活力的劳动力是NOAA的研究基础。NOAA拥有超过11300名联邦雇员,1000多家承包商,并与10000多名研究人员在学术界和非政府组织开展合作。2015-2016年间,NOAA有400多人获得各项奖励,并获得10多项团体奖励。

    (鲁景亮 编译)

相关报告
  • 《Nature发布2024年值得关注的七大技术,中国科学家成果首次入选,来自高彩霞团队》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-01-29
    • 2024年1月22日,《自然》发布了2024年值得关注的七大技术——大片段DNA插入、人工智能设计蛋白质、脑机接口、 细胞图谱、超高分辨率显微成像、3D打印纳米材料和DeepFake检测。与往年相比,今年最大的变化在于,人工智能(AI)的进步成为许多令人兴奋的技术创新的核心支撑。 值得一提的是,高彩霞团队开发的大片段DNA精准定点插入新工具PrimeRoot入选,这也是自2018年首次评选以来,第一项来自中国学者的技术成果入选。 大片段DNA插入 2023年12月,美国FDA批准了首个基于CRISPR-Cas9的基因编辑疗法上市,用于治疗镰状细胞病,几天前,FDA进一步批准了该疗法用于治疗输血依赖性β-地中海贫血。这是基因编辑在临床应用中的重大胜利。CRISPR-Cas9及相关基因编辑技术通过使用Cas9等核酸酶切割DNA双链实现对基因的敲除或引入小的序列变化,其很难实现精确的可编程的大片段DNA序列的插入。而最近的一些研究成果,让科学家们能够替换或插入大片段DNA。 2023年4月,中国科学院遗传与发育生物学研究所高彩霞团队在 Nature Biotechnolgy 期刊发表了题为:Precise integration of large DNA sequences in plant genomes using PrimeRoot editors 的研究论文。该研究将团队之前开发的ePPE(Engineered Plant Prime Editor)与刘如谦团队开发的epegRNA(Engineered pegRNA)结合,在植物细胞内建立了dual-ePPE系统,实现了最高效率可达50%以上的短片段DNA的精准定点插入。然后将dual-ePPE与筛选出的高效的酪氨酸家族位点特异性重组酶Cre相结合,开发了能够实现大片段DNA精准插入的PrimeRoot系统。该系统在水稻和玉米中能够实现一步法大片段DNA的精准定点插入,效率可达6%,成功插入的片段长度最长达11.1kb,且插入完全精准可预测,在编辑效率和精准性上具有显著优势。 高彩霞研究员表示,PrimeRoot系统高效、精准插入大片段DNA的能力,可通过基因敲入广泛用于赋予作物对疾病和病原体的抗性,从而继续推动基于CRISPR的植物基因组工程的创新浪潮。相信这项新技术可以应用于任何植物物种。 2022年11月,麻省理工学院的 Omar Abudayyeh、Jonathan Gootenberg 团队在 Nature Biotechnology 期刊发表了题为:Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases 的研究论文。该研究将来自噬菌体的丝氨酸整合酶与Cas9切口酶(只切断DNA一条链,而不造成DNA双链断裂)结合,开发了一种名为PASTE的新型基因编辑技术。PASTE在gRNA的引导下切割特定基因组位点,此时Cas9切口酶融合的逆转录酶将整合酶所需的附着位点序列整合进切割位点。通过这种方式,就可以将整合酶所需的附着位点插入基因组中的任何位置,而且这种插入不引起DNA双链断裂,此时,整合酶就可以与附着位点结合,将大片段DNA序列插入。该技术能够以更安全、更有效的方式替换突变基因,还可向哺乳动物及人类细胞中定点插入长达36kb的超长DNA片段。 2022年2月,斯坦福大学丛乐团队在 Nature Cell Biology 期刊发表了题为:dCas9-based gene editing for cleavage-free genomic knock-in of long sequences 的研究论文。该研究将来自噬菌体的DNA精确重组酶——单链退火蛋白(SSAP),与DNA切割活性丧失的dCas9系统结合,开发出了一种新型基因编辑工具——dCas9-SSAP,可在不产生DNA双链断裂的情况下,实现长达2kb的大片段DNA的高效、精准定点插入。丛乐认为,对于体内基因编辑而言,PASTE尺寸太大,需要三个独立的AAV病毒载体毒才能递送,因此,其编辑效率可能不如尺寸更小的dCas9-SSAP。 深度学习用于蛋白质设计 20年前,华盛顿大学的 David Baker 等人在 Science 期刊发表论文,取得了一项里程碑式成就:他们使用计算工具从头设计了一个全新蛋白质——Top7,该蛋白由93个氨基酸残疾组成,能够如预期般折叠,且非常稳定,但它没有任何有意义的生物学功能。 而现在,在 David Baker 等人的努力下,从头设计蛋白质已经一种成熟的工具,用于生成定制酶,及其他基于蛋白质的药物、疫苗和药物递送载体。这种进步的大部分归因于越来越多的将蛋白质序列与其结构联系起来的数据库,但人工智能的技术进步也同样重要。 例如,2023年2月,David Baker 团队在 Nature 期刊发表论文,从头设计了人造荧光素酶,这也是科学界首次基于深度学习的人工智能来创造自然界不存在的酶。2023年4月,David Baker 团队在 Science 期刊发表论文,利用基于强化学习的人工智能从头设计了全新且有功能的蛋白纳米颗粒,为疫苗和药物递送载体开发开辟了全新道路。2023年12月,David Baker 团队在 Nature 期刊发表论文,利用基于深度学习的人工智能从头设计了具有高亲和力和特异性的全新蛋白质,这为抗体设计和疾病诊断打开了新思路。 脑机接口 2012年,Pat Bennett 被诊断出患上了渐冻症(ALS),而且她的情况比较特殊,她的脑干更早开始恶化,她在还能行走、打字的时候,就已经无法使用嘴唇、舌头、喉部和下颚的肌肉运动来清晰地发声,她的大脑能够尝试发声,但肌肉已无法执行这一命令,从而失去了说话的能力。 2022年3月,她参加了斯坦福大学 Francis Willett 教授领导的脑机接口临床试验,研究团队在她的大脑皮层表面植入了四个微型细电极阵列(每个阵列包含8×8个电极),用于收集单个细胞的神经活动,植入的阵列连接到金线上并通过电缆连接到电脑上,并训练人工智能(AI)来解码她试图进行的发声。 2023年8月,Francis Willett 团队将这项研究以:A high-performance speech neuroprosthesis 为题,发表在了 Nature 期刊。该论文显示,通过植入皮质内脑机接口(iBCI),并通过训练人工智能(AI)软件,能够将渐冻症(ALS)患者 Pat Bennett 大脑中的神经活动实时转化为文字,转化速度可达每分钟62个单词,总词汇量高达125000,相比已有的脑机接口速度更快、准确性更高、词汇覆盖率更大。这项研究展示了一条可行的路径以恢复渐冻症等瘫痪者的语言沟通能力。 Nature 同期还发表了来自加州大学旧金山分校的张复伦(Edward Chang)团队题为:A high-performance neuroprosthesis for speech decoding and avatar control 的研究论文。 该研究开发了一种新型脑机接口(BCI),结合人工智能(AI)技术,可以高性能、实时将因脑干中风而严重瘫痪的患者大脑信号同时转化为三种输出形式:文字、语音和控制一个头像,从而帮助严重瘫痪者恢复沟通能力。这些脑机接口装置的开发成功应用,代表了神经科学和神经工程学研究的重大进步,对于缓解因瘫痪性神经损伤和疾病而失声的人的痛苦有巨大潜力。 细胞图谱 Wellcome Sanger研究所的 Sarah Teichmann 和现任基因泰克公司的研究和早期开发负责人 Aviv Regev 于2016年发起了一项规模庞大、雄心勃勃的人类细胞图谱(Human Cell Atlas,HCA)计划。该计划有近100个国家的约3000名科学家参与,而HCA本身也是一个更广泛的细胞和分子图谱交叉生态系统的一部分,包括人类生物分子图谱计划(HuBMAP)和脑计划(BICCN)。 去年,已有数十项研究展示了使用这些技术生成器官特异性图谱的进展。2023年,Nature 发布了一个论文集(go.nature.com/3vbznk7),重点介绍了HuBMAP的进展,Science 则发布了一篇论文集,详细介绍了BICCN的工作(go.nature.com/3nsf4ys)。Sarah Teichmann 表示,还有相当多的工作要做,估计至少需要五年时间才能完成HCA计划。但当该计划完成时,产生的人类细胞图谱将是无价之宝。例如可以使用细胞图谱数据来指导组织和细胞特异性药物开发,还有助于了解癌症等复杂疾病的风险和病因。 超高分辨率显微成像 Stefan Hell、Eric Betzig和William Moerner因打破限制光显微镜空间分辨率的“衍射极限”而获得2014年诺贝尔化学奖,这让我们得以在数十纳米级分辨率下进行分子尺度的成像实验。然而,科学家们渴望得到更好的结果,他们也正在取得快速进展,努力缩小超分辨率显微镜与结构生物学技术之间的差距。Stefan Hell 团队2022年开发了一种名为MINSTED的方法,使用专用光学显微镜,可以以2.3埃的分辨率分辨出单个荧光标签。 马克斯·普朗克生物化学研究所的 Ralf Jungmann 团队在2023年开发了一种序列成像(RESI)的增强分辨率的方法,可以分辨出DNA链上的单个碱基对,使用标准的荧光显微镜实现了埃级分辨率。 哥廷根大学医学中心神经科学家 Ali Shaib 和 Silvio Rizzoli 领导的团队开发的一步法纳米尺度膨胀(ONE)显微镜方法,虽然没有完全达到上述埃级分辨率水平,但ONE显微镜提供了前所未有的机会,可以直接成像单个蛋白质和多蛋白复合物的精细结构细节,无论是在孤立状态还是在细胞中。 3D打印纳米材料 在纳米尺度下,会发生很多奇怪而有趣的事情,这可能会使材料科学变得难以预测,但这也意味着我们可以在纳米尺度制造具有独特性质的轻质材料,例如更高的强度、与光或声的定制交互以及增强的催化或能量存储能力。目前存在几种精确制造此类纳米材料的策略,其中大多数使用激光诱导光敏材料的图案化“光聚合”,在过去几年中,科学家们在克服这些方法的限制方面取得了相当大的进展。 但目前3D打印纳米材料还存在几个挑战,首先是速度,使用光聚合技术组装纳米结构的速度大约比其他纳米级3D打印方法快三个数量级。这一速度可能已经足够用于实验室使用,但对于大规模生产或工业流程来说还是太慢了。第二个挑战是并非所有材料都可以直接通过光聚合来打印,例如金属。但加州理工学院的 Julia Greer 开发出一种替代方法,将光聚合水凝胶作为微尺度模板,然后注入金属盐并进行处理,使金属在收缩的同时具有模板的结构。最后是成本,这可能是最难突破的挑战,许多光聚合方法中使用的脉冲激光系统成本超过50万美元,但好在更便宜的替代品正在出现。 DeepFake检测 公开可用的生成式人工智能算法的爆炸式增长,使得生成令人信服但完全人为的图像、音频和视频变得简单。纽约州立大学布法罗分校的计算机科学家吕思伟教授表示,他已经看到过许多人工智能生成的与军事冲突有关的“Deepfake”图像和音频。用户使用人工智能生成欺骗性内容,吕思伟和其他媒体取证专家致力于检测和拦截它们。 生成式人工智能开发人员的一个解决方案是在人工智能模型的输出中嵌入隐藏信号,产生人工智能生成内容的水印。其他策略则侧重于内容本身,例如,一些伪造视频用一个人的面部特征替换了另一个人的面部特征,新的算法可以在被替换特征的边界处识别伪造痕迹。吕思伟团队开发了一个算法——DeepFake-O-Meter,可以从不同角度分析视频内容,以识别“Deepfake”内容。这些识别工具是有用的,但可以预见,我们与人工智能生成的错误信息和内容的斗争可能还会持续多年。
  • 《年度重磅 | 科睿唯安发布2024年度“全球高被引科学家”名单》

    • 编译者:程冰
    • 发布时间:2024-11-22
    • 一、简介 英国伦敦,2024年11月19日——科睿唯安今天发布了2024年度“全球高被引科学家”名单,遴选全球高校、研究机构和商业组织中对所在研究领域具有重大且广泛影响的顶尖科研人才。 来自全球 59 个国家和地区 1200 多家机构的 6636 名科学家入选2024年度名单。科睿唯安科学信息研究所(ISI?)的文献计量学专家和数据科学家基于 Web of Science 核心合集(Web of Science Core Collection?) 引文数据以及定性分析,开展了严格的评估和遴选。 2024年度名单提供了对全球顶尖科研人才现状的重要见解,并揭示了不同国家、地区和机构的发展趋势。中国内地和香港入选人员占比显著上升,美国占比则逐渐下降。这种趋势反映出顶尖科研和学术贡献在地理、政治和文化层面正在经历再平衡的过程。 二、2024年度名单主要亮点 1.美国仍是“全球高被引科学家”名单入选人次最多的国家,共 2507 人次入选,占总人次的 36.4%。美国入选人次占比自2018年(占比 43.3%)以来持续下降。 2.中国内地入选人次数再次大幅增加,共 1405 人次入选,占比为 20.4%,是2018年的逾两倍。在全球高被引科学家上榜人次前十的机构中,清华大学(92人次)上升一位,取代美国国立卫生研究院(90人次),位列第四。 3.来自 59 个国家和地区的 6636 名科学家入选全球高被引科学家名单。85.4% 的入选者来自于 10 个国家和地区,74.4% 的入选者集中于排名最高的5个国家和地区。 4.一些杰出科学家同时在多个ESI学科入选:216 人入选两个学科,22 人入选三个或以上学科。 5.美国一些州入选人次表现突出,如:加利福尼亚州有 552 人次入选,几乎与英国相当。 6.中国香港入选人次增长强劲,达到 134 人次,占全球总人次的 1.9%。 7.入选者包括在制药、生物技术、太阳能技术、信息技术等不同领域全球领先企业或机构中从事突破性科研工作的研究人员。这些企业或机构来自全球多个国家,包括:阿斯利康(1人次)、拜耳(2人次)、华大基因(4人次)、DeepMind Technologies(1人次)、谷歌(4人次)、微软(2人次)和罗氏(5人次)。 8.在包括政府和其他类型研究机构在内的所有机构中,中国科学院以 308 人次荣登榜首,多于去年的 270 人次。其他排名靠前的政府或非大学机构包括:美国国立卫生研究院(90人次)、德国马普学会(56人次)和美国纪念斯隆·凯特琳癌症中心(44人次)。 图 1 2024年度全球高被引科学家上榜人次前十的国家 图2 2024年度全球高被引科学家上榜人次前十的机构 三、2024年度全球高被引科学家名单的评估和遴选过程 科睿唯安“全球高被引科学家名单”每年评选一次,旨在表彰对所在学科做出重大贡献且具有全球影响力的自然科学家和社会科学家。 今年共有 6636 位研究人员共 6886 人次入选全球高被引科学家名单。由于一些研究人员在一个以上ESI学科入选,因此入选名单的总人次数超过了入选科学家的总人数。 对国家/地区和机构的分析是基于 6886 的总人次。在2024年度名单中,3560 人次入选 20 个ESI学科,3326 人次入选跨学科。 今年的名单是根据2013年至2023年这11年期间所发表的高被引论文数量遴选得出。遴选方法基于科睿唯安科学信息研究所文献计量专家对SCIE和SSCI收录期刊中高被引论文数据进行严格评估和整理。 在2024年度名单发布之前,科睿唯安与入选科研人员进行了广泛的验证和反馈,以确保名单准确性。