《Nature发布2024年值得关注的七大技术,中国科学家成果首次入选,来自高彩霞团队》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-01-29
  • 2024年1月22日,《自然》发布了2024年值得关注的七大技术——大片段DNA插入、人工智能设计蛋白质、脑机接口、 细胞图谱、超高分辨率显微成像、3D打印纳米材料和DeepFake检测。与往年相比,今年最大的变化在于,人工智能(AI)的进步成为许多令人兴奋的技术创新的核心支撑。

    值得一提的是,高彩霞团队开发的大片段DNA精准定点插入新工具PrimeRoot入选,这也是自2018年首次评选以来,第一项来自中国学者的技术成果入选。

    大片段DNA插入

    2023年12月,美国FDA批准了首个基于CRISPR-Cas9的基因编辑疗法上市,用于治疗镰状细胞病,几天前,FDA进一步批准了该疗法用于治疗输血依赖性β-地中海贫血。这是基因编辑在临床应用中的重大胜利。CRISPR-Cas9及相关基因编辑技术通过使用Cas9等核酸酶切割DNA双链实现对基因的敲除或引入小的序列变化,其很难实现精确的可编程的大片段DNA序列的插入。而最近的一些研究成果,让科学家们能够替换或插入大片段DNA。

    2023年4月,中国科学院遗传与发育生物学研究所高彩霞团队在 Nature Biotechnolgy 期刊发表了题为:Precise integration of large DNA sequences in plant genomes using PrimeRoot editors 的研究论文。该研究将团队之前开发的ePPE(Engineered Plant Prime Editor)与刘如谦团队开发的epegRNA(Engineered pegRNA)结合,在植物细胞内建立了dual-ePPE系统,实现了最高效率可达50%以上的短片段DNA的精准定点插入。然后将dual-ePPE与筛选出的高效的酪氨酸家族位点特异性重组酶Cre相结合,开发了能够实现大片段DNA精准插入的PrimeRoot系统。该系统在水稻和玉米中能够实现一步法大片段DNA的精准定点插入,效率可达6%,成功插入的片段长度最长达11.1kb,且插入完全精准可预测,在编辑效率和精准性上具有显著优势。

    高彩霞研究员表示,PrimeRoot系统高效、精准插入大片段DNA的能力,可通过基因敲入广泛用于赋予作物对疾病和病原体的抗性,从而继续推动基于CRISPR的植物基因组工程的创新浪潮。相信这项新技术可以应用于任何植物物种。

    2022年11月,麻省理工学院的 Omar Abudayyeh、Jonathan Gootenberg 团队在 Nature Biotechnology 期刊发表了题为:Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases 的研究论文。该研究将来自噬菌体的丝氨酸整合酶与Cas9切口酶(只切断DNA一条链,而不造成DNA双链断裂)结合,开发了一种名为PASTE的新型基因编辑技术。PASTE在gRNA的引导下切割特定基因组位点,此时Cas9切口酶融合的逆转录酶将整合酶所需的附着位点序列整合进切割位点。通过这种方式,就可以将整合酶所需的附着位点插入基因组中的任何位置,而且这种插入不引起DNA双链断裂,此时,整合酶就可以与附着位点结合,将大片段DNA序列插入。该技术能够以更安全、更有效的方式替换突变基因,还可向哺乳动物及人类细胞中定点插入长达36kb的超长DNA片段。

    2022年2月,斯坦福大学丛乐团队在 Nature Cell Biology 期刊发表了题为:dCas9-based gene editing for cleavage-free genomic knock-in of long sequences 的研究论文。该研究将来自噬菌体的DNA精确重组酶——单链退火蛋白(SSAP),与DNA切割活性丧失的dCas9系统结合,开发出了一种新型基因编辑工具——dCas9-SSAP,可在不产生DNA双链断裂的情况下,实现长达2kb的大片段DNA的高效、精准定点插入。丛乐认为,对于体内基因编辑而言,PASTE尺寸太大,需要三个独立的AAV病毒载体毒才能递送,因此,其编辑效率可能不如尺寸更小的dCas9-SSAP。

    深度学习用于蛋白质设计

    20年前,华盛顿大学的 David Baker 等人在 Science 期刊发表论文,取得了一项里程碑式成就:他们使用计算工具从头设计了一个全新蛋白质——Top7,该蛋白由93个氨基酸残疾组成,能够如预期般折叠,且非常稳定,但它没有任何有意义的生物学功能。

    而现在,在 David Baker 等人的努力下,从头设计蛋白质已经一种成熟的工具,用于生成定制酶,及其他基于蛋白质的药物、疫苗和药物递送载体。这种进步的大部分归因于越来越多的将蛋白质序列与其结构联系起来的数据库,但人工智能的技术进步也同样重要。

    例如,2023年2月,David Baker 团队在 Nature 期刊发表论文,从头设计了人造荧光素酶,这也是科学界首次基于深度学习的人工智能来创造自然界不存在的酶。2023年4月,David Baker 团队在 Science 期刊发表论文,利用基于强化学习的人工智能从头设计了全新且有功能的蛋白纳米颗粒,为疫苗和药物递送载体开发开辟了全新道路。2023年12月,David Baker 团队在 Nature 期刊发表论文,利用基于深度学习的人工智能从头设计了具有高亲和力和特异性的全新蛋白质,这为抗体设计和疾病诊断打开了新思路。

    脑机接口

    2012年,Pat Bennett 被诊断出患上了渐冻症(ALS),而且她的情况比较特殊,她的脑干更早开始恶化,她在还能行走、打字的时候,就已经无法使用嘴唇、舌头、喉部和下颚的肌肉运动来清晰地发声,她的大脑能够尝试发声,但肌肉已无法执行这一命令,从而失去了说话的能力。

    2022年3月,她参加了斯坦福大学 Francis Willett 教授领导的脑机接口临床试验,研究团队在她的大脑皮层表面植入了四个微型细电极阵列(每个阵列包含8×8个电极),用于收集单个细胞的神经活动,植入的阵列连接到金线上并通过电缆连接到电脑上,并训练人工智能(AI)来解码她试图进行的发声。

    2023年8月,Francis Willett 团队将这项研究以:A high-performance speech neuroprosthesis 为题,发表在了 Nature 期刊。该论文显示,通过植入皮质内脑机接口(iBCI),并通过训练人工智能(AI)软件,能够将渐冻症(ALS)患者 Pat Bennett 大脑中的神经活动实时转化为文字,转化速度可达每分钟62个单词,总词汇量高达125000,相比已有的脑机接口速度更快、准确性更高、词汇覆盖率更大。这项研究展示了一条可行的路径以恢复渐冻症等瘫痪者的语言沟通能力。

    Nature 同期还发表了来自加州大学旧金山分校的张复伦(Edward Chang)团队题为:A high-performance neuroprosthesis for speech decoding and avatar control 的研究论文。

    该研究开发了一种新型脑机接口(BCI),结合人工智能(AI)技术,可以高性能、实时将因脑干中风而严重瘫痪的患者大脑信号同时转化为三种输出形式:文字、语音和控制一个头像,从而帮助严重瘫痪者恢复沟通能力。这些脑机接口装置的开发成功应用,代表了神经科学和神经工程学研究的重大进步,对于缓解因瘫痪性神经损伤和疾病而失声的人的痛苦有巨大潜力。

    细胞图谱

    Wellcome Sanger研究所的 Sarah Teichmann 和现任基因泰克公司的研究和早期开发负责人 Aviv Regev 于2016年发起了一项规模庞大、雄心勃勃的人类细胞图谱(Human Cell Atlas,HCA)计划。该计划有近100个国家的约3000名科学家参与,而HCA本身也是一个更广泛的细胞和分子图谱交叉生态系统的一部分,包括人类生物分子图谱计划(HuBMAP)和脑计划(BICCN)。

    去年,已有数十项研究展示了使用这些技术生成器官特异性图谱的进展。2023年,Nature 发布了一个论文集(go.nature.com/3vbznk7),重点介绍了HuBMAP的进展,Science 则发布了一篇论文集,详细介绍了BICCN的工作(go.nature.com/3nsf4ys)。Sarah Teichmann 表示,还有相当多的工作要做,估计至少需要五年时间才能完成HCA计划。但当该计划完成时,产生的人类细胞图谱将是无价之宝。例如可以使用细胞图谱数据来指导组织和细胞特异性药物开发,还有助于了解癌症等复杂疾病的风险和病因。

    超高分辨率显微成像

    Stefan Hell、Eric Betzig和William Moerner因打破限制光显微镜空间分辨率的“衍射极限”而获得2014年诺贝尔化学奖,这让我们得以在数十纳米级分辨率下进行分子尺度的成像实验。然而,科学家们渴望得到更好的结果,他们也正在取得快速进展,努力缩小超分辨率显微镜与结构生物学技术之间的差距。Stefan Hell 团队2022年开发了一种名为MINSTED的方法,使用专用光学显微镜,可以以2.3埃的分辨率分辨出单个荧光标签。

    马克斯·普朗克生物化学研究所的 Ralf Jungmann 团队在2023年开发了一种序列成像(RESI)的增强分辨率的方法,可以分辨出DNA链上的单个碱基对,使用标准的荧光显微镜实现了埃级分辨率。

    哥廷根大学医学中心神经科学家 Ali Shaib 和 Silvio Rizzoli 领导的团队开发的一步法纳米尺度膨胀(ONE)显微镜方法,虽然没有完全达到上述埃级分辨率水平,但ONE显微镜提供了前所未有的机会,可以直接成像单个蛋白质和多蛋白复合物的精细结构细节,无论是在孤立状态还是在细胞中。

    3D打印纳米材料

    在纳米尺度下,会发生很多奇怪而有趣的事情,这可能会使材料科学变得难以预测,但这也意味着我们可以在纳米尺度制造具有独特性质的轻质材料,例如更高的强度、与光或声的定制交互以及增强的催化或能量存储能力。目前存在几种精确制造此类纳米材料的策略,其中大多数使用激光诱导光敏材料的图案化“光聚合”,在过去几年中,科学家们在克服这些方法的限制方面取得了相当大的进展。

    但目前3D打印纳米材料还存在几个挑战,首先是速度,使用光聚合技术组装纳米结构的速度大约比其他纳米级3D打印方法快三个数量级。这一速度可能已经足够用于实验室使用,但对于大规模生产或工业流程来说还是太慢了。第二个挑战是并非所有材料都可以直接通过光聚合来打印,例如金属。但加州理工学院的 Julia Greer 开发出一种替代方法,将光聚合水凝胶作为微尺度模板,然后注入金属盐并进行处理,使金属在收缩的同时具有模板的结构。最后是成本,这可能是最难突破的挑战,许多光聚合方法中使用的脉冲激光系统成本超过50万美元,但好在更便宜的替代品正在出现。

    DeepFake检测

    公开可用的生成式人工智能算法的爆炸式增长,使得生成令人信服但完全人为的图像、音频和视频变得简单。纽约州立大学布法罗分校的计算机科学家吕思伟教授表示,他已经看到过许多人工智能生成的与军事冲突有关的“Deepfake”图像和音频。用户使用人工智能生成欺骗性内容,吕思伟和其他媒体取证专家致力于检测和拦截它们。

    生成式人工智能开发人员的一个解决方案是在人工智能模型的输出中嵌入隐藏信号,产生人工智能生成内容的水印。其他策略则侧重于内容本身,例如,一些伪造视频用一个人的面部特征替换了另一个人的面部特征,新的算法可以在被替换特征的边界处识别伪造痕迹。吕思伟团队开发了一个算法——DeepFake-O-Meter,可以从不同角度分析视频内容,以识别“Deepfake”内容。这些识别工具是有用的,但可以预见,我们与人工智能生成的错误信息和内容的斗争可能还会持续多年。

相关报告
  • 《2020年度中国科学十大进展公布》

    • 来源专题:科技大数据监测服务平台
    • 编译者:zhoujie
    • 发布时间:2021-03-11
    • 科技日报记者 刘垠 2月27日,科技部高技术研究发展中心(基础研究管理中心)发布2020年度中国科学十大进展。嫦娥五号首次实现月面自动采样返回、“奋斗者”号创造中国载人深潜新纪录等10项重大科学进展,从31项候选进展中脱颖而出。 根据得票高低,2020年度中国科学十大进展分别为: 我国科学家积极应对新冠肺炎疫情取得突出进展 嫦娥五号首次实现月面自动采样返回 “奋斗者”号创造中国载人深潜新纪录 揭示人类遗传物质传递的关键步骤 研发出具有超高压电性能的透明铁电单晶 2020珠峰高程测定 古基因组揭示近万年来中国人群的演化与迁徙历史 大数据刻画出迄今最高精度的地球3亿年生物多样性演变历史 深度解析多器官衰老的标记物和干预靶标 实验观测到化学反应中的量子干涉现象 下面就跟随我们,逐一了解一下这十大进展。 1. 我国科学家积极应对新冠肺炎疫情取得突出进展 面对突如其来的新冠肺炎疫情,我国科学家认真贯彻落实习近平总书记关于疫情防控的重要讲话和一系列重要指示批示精神,在中央应对疫情工作领导小组和国务院联防联控机制统筹下,团结协作,争分夺秒,取得了一系列突出进展,为打赢疫情防控阻击战提供了重要的科学支撑。 在病原学和流行病学方面,第一时间分离鉴定出新冠病毒毒株并向世界卫生组织共享了病毒全基因组序列,为诊断技术的快速推进和药物疫苗开发奠定基础;阐明了新冠病毒入侵细胞的关键机制;持续深化病毒传播途径研究,为防控策略的优化提供科技支撑;定量评估了我国防控措施的效果。 在检测试剂研发和动物模型方面,在疫情之初迅速研发了新冠核酸诊断试剂,并研发了免疫检测试剂,为病原检测提供了强有力的支撑;构建了小鼠、猴感染新冠病毒的动物模型,为药物筛选、疫苗研发以及病毒传播机制的研究提供支撑。 在药物和临床救治方面,揭示了新冠临床特征,在没有特效药的情况下,实行中西医结合,先后推出八版全国新冠肺炎诊疗方案,筛选出“三药三方”等临床有效的中药西药和治疗办法,被多个国家借鉴和使用;解析了新冠病毒及关键蛋白质的结构,揭示了一批中西药的作用机制;提出了建立方舱医院、开展大规模核酸检测、大数据追踪溯源等科学防控方案,提高了收治率和治愈率,降低了感染率和病亡率。 在疫苗和中和性抗体研发方面,同时开展了灭活疫苗、病毒载体疫苗、蛋白亚单位疫苗、核酸疫苗等的研发,腺病毒载体疫苗在全球率先开展1期临床试验,灭活疫苗在全球率先开展3期临床试验,并获批附条件上市;鉴定并创制靶向新冠刺突蛋白S和受体结合域RBD的一系列中和单克隆抗体,形成抗病毒“鸡尾酒”中国抗体组合方案。 我国科学家通过不懈努力和无私奉献,通过严谨高效的科研工作,为我国取得抗击新冠肺炎疫情斗争重大战略成果提供了强大科学支撑。 2. 嫦娥五号首次实现月面自动采样返回 11月24日,嫦娥五号探测器在海南文昌航天发射场发射,由长征五号运载火箭直接送入地月转移轨道;此后,探测器经历地月转移、近月制动、环月飞行、月面着陆、月面采样封装、月面起飞、月球轨道交会对接与样品转移、月地入射、月地转移和再入回收等飞行阶段,历时23天嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆。中共中央总书记、国家主席、中央军委主席习近平致电,代表党中央、国务院和中央军委,祝贺探月工程嫦娥五号任务取得圆满成功。 作为我国复杂度最高、技术跨度最大的航天系统工程,嫦娥五号首次完成了地外天体采样与封装、首次地外天体表面起飞、首次无人月球轨道交会对接与样品转移、首次月地入射并携带月球样品高速再入返回地球等我国航天史上多个重大技术突破,最终实现了我国首次地外天体采样返回。嫦娥五号月面自动采样返回任务的圆满成功,标志着我国探月工程绕、落、回三步走规划的圆满收官,是中国航天向前迈进的一大步,将为深化人类对月球成因和太阳系演化历史的科学认知做出贡献。 3. “奋斗者”号创造中国载人深潜新纪录 “奋斗者”号全海深载人潜水器研制是我国“十三五”深海关键技术与装备领域的重大攻关任务,于2016年立项启动。2020年6月,“奋斗者”号完成总装集成与水池试验。2020年7月,“奋斗者”号完成第一阶段海试,共计下潜17次,最大下潜深度4548米。2020年10月10日,“奋斗者”号启航赴马里亚纳海沟开展第二阶段海试,期间共计完成13次下潜,其中11人24人次参与了8个超过万米深度的深潜试验。2020年11月10日8时12分,“奋斗者”号创造了10909米的中国载人深潜深度纪录。 中国船舶七〇二所是“奋斗者”号研制的牵头单位,在潜水器的总体设计、关键技术研发、集成建造及试验验证等工作中发挥了核心作用,创建了独立自主的全海深载人深潜装备设计技术体系,构建了稳定可靠的高标准、规范化的试验、检测与应用体系,进一步在潜水器总体设计与优化、系统调试与仿真、深海作业等关键技术方面取得重大突破,国际上首次攻克高强高韧钛合金材料制备和焊接技术,实现万米级浮力材料固化成型新工艺自主可控,潜水器动力、推进器、水声通信、智能控制等核心技术水平进一步提升。 ”奋斗者”号作为当前国际唯一能同时携带3人多次往返全海深作业的载人深潜装备,其研制及海试的成功,显著提升了我国深海装备技术的自主创新水平,使我国具有了进入世界海洋最深处开展科学探索和研究的能力,体现了我国在海洋高技术领域的综合实力,是我国深海科技探索道路上的重要里程碑。 4. 揭示人类遗传物质传递的关键步骤 DNA复制是人类遗传物质在细胞之间得以精确传递的基础,人们对高等生物中识别DNA复制起始位点的具体过程并不清楚,这在一定程度上也阻碍了人们对癌症发生发展机制的理解。 中国科学院生物物理研究所李国红团队及其合作者揭示了一种精细的DNA复制起始位点的识别调控机制。该研究发现,组蛋白变体H2A.Z能够通过结合组蛋白甲基化转移酶SUV420H1,促进组蛋白H4的第二十位氨基酸发生二甲基化修饰。而带有二甲基化修饰的H2A.Z核小体能进一步招募复制起始位点识别蛋白,从而帮助DNA复制起始位点的识别。该研究进一步发现,被H2A.Z-SUV420H1-H4K20me2通路调控的复制起始位点具有很强的复制活性,并偏向在复制期早期被激活使用。在癌细胞中破坏该调控机制后,癌细胞的DNA复制和细胞生长都受到了抑制。在T细胞中破坏该调控机制后,T细胞的免疫激活也受到了抑制。 该研究阐述了一个新颖的由H2A.Z介导的DNA复制表观遗传调控机制,对理解高等生物DNA复制起始位点的识别提供了新的视角,为解决长期存在的真核细胞DNA复制起始点选择启动问题做出了重要贡献。 5. 研发出具有超高压电性能的透明铁电单晶 弛豫铁电单晶[Pb(Mg1/3Nb2/3)O3-PbTiO3, PMN-PT](注:数字均为下标)具有优异的压电效应,已广泛应用于超声成像、声呐装备和微电子机械系统(MEMS)等领域。然而,自其发现20多年以来,压电性能就再没有新的突破,并且由于铁电畴壁的存在,导致其透光率低,无法满足当前压电器件多功能、高灵敏度的发展需求,急需新的理论和设计方法 西安交通大学徐卓教授研究团队揭示了弛豫铁电单晶高压电效应的起源,研发出了钐掺杂的PMN-PT单晶,其压电性能超过4000 pC/N,相比未掺杂单晶提高了一倍。在此基础上,利用电畴结构调控,消除了单晶中对光起散射作用的铁电畴壁,首次在PMN-PT单晶中同时获得了高压电性和高透光性,突破了长期以来二者难以共存的国际难题。其压电系数比现有的透明压电单晶LiNbO3(注:3为下标)提高了100倍,电光系数最大可提高40倍,同时还具有更高的抗光损伤阈值和非线性光学效应。这种透明铁电单晶可大幅提升光声成像系统在乳腺癌、黑色素瘤和血液疾病诊断中的成像分辨率,也为研制高性能电光调制器、光学相控阵和量子光学器件提供了一种全新的关键材料。这种具有优异电光、声光和声-光-电耦合效应的单晶材料,有望进一步开辟更多新的应用领域。 6. 2020珠峰高程测定 珠峰高度长期以来受到全世界关注,精确测定珠峰高度并向全世界公布,彰显国家综合实力和科技水平。2020珠峰高程测量,中国科学家团队综合运用多种现代测绘技术,实现多个重大技术创新突破,获取了历史上最高精度的珠峰高程成果。 此次珠峰高程测量,北斗卫星定位技术和国产测量装备首次全面担纲主力,国产测量装备应用实现重大突破。首次完成了峰顶地面重力测量,获取了人类历史上第一个珠峰峰顶的重力测量结果,有助于提升珠峰高程测量精度。科学家团队克服珠峰地区极端气象和恶劣环境,首次实现珠峰峰顶及周边区域1.27万平方千米的航空重力、光学和激光遥感测量的历史性突破,填补了珠峰地区重力资料空白,大幅提升了珠峰高程测量的精度。与2005年珠峰高程测量相比,珠峰地区大地水准面精度提升幅度达300%。中国和尼泊尔科学家团队开展科技合作,首次建立了基于全球高程基准的珠峰地区大地水准面,历史上首次共同确定了基于全球高程基准的珠峰雪面高程8848.86米,国家主席习近平同尼泊尔总统班达里互致信函,共同宣布珠穆朗玛峰最新高程,赢得国际社会广泛赞誉。除此之外,珠峰测量获取的丰富观测数据成果,将为珠峰地区的生态环境保护修复、自然资源管理、地质研究与调查、地壳运动监测、气候变化和冰川冻土研究等领域提供宝贵、翔实的第一手资料。 7. 古基因组揭示近万年来中国人群的演化与迁徙历史 在国际古基因组学领域,有关东亚,尤其是中国史前人群的古基因组研究非常匮乏。中国科学院古脊椎动物与古人类研究所付巧妹研究团队首次针对中国南北方史前人群展开时间跨度最大、规模性、系统性的古基因组研究,通过前沿实验方法成功获取我国南北方11个遗址25个9500-4200年前的个体和1个300年前个体的基因组,揭示中国人群自9500年以来的南北分化格局、主体连续性与迁徙融合史。 研究发现中国南北方主体人群9500年前已分化,但南、北方同期人群的演化基本是连续的,没有受到明显的外来人群的影响,迁徙互动主要发生在东亚区域内各人群间;此外明确以台湾岛原住民为代表、广泛分布在太平洋岛屿的南岛语系人群,起源于中国南方沿海地区且可追溯至8400年前。该项成果填补了东方尤其是中国地区史前人类遗传、演化、适应的重要信息缺环,为阐明中华民族的形成过程及修正东亚南方人群演化模式做出重要科学贡献。 8. 大数据刻画出迄今最高精度的地球3亿年生物多样性演变历史 生命起源与演化是世界十大科学之谜之一。地球上曾经生活过的生物99%以上已经灭绝,通过化石记录重建地球生物多样性变化历史是认识当今生物多样性现状与未来趋势的最重要途径之一。然而,地质历史时期地球生物多样性变化研究的时间分辨率低、生物分类粗,无法精确识别突发性重大生物演变事件,也不能为近代地球生态系统演变研究提供重要参考。 南京大学沈树忠、樊隽轩团队联合国内外专家创建国际大型数据库,自主研发人工智能算法,利用“天河二号”超算取得突破,获得了全球第一条高精度的古生代3亿多年的海洋生物多样性演化曲线,时间分辨率较国际同类研究提高400多倍。新曲线精准刻画出地球生物多样性演变过程中的多次重大生物灭绝、复苏和辐射事件,揭示了当时生物多样性变化与大气CO2(注:2为下标)含量以及全球性气候剧变的协同关系。该研究将推动整个演化古生物学研究的变革。 9. 深度解析多器官衰老的标记物和干预靶标 随着人口老龄化程度的日益加剧,深入研究衰老、科学应对人口老龄化是新时代的国家重大需求。围绕衰老的机制和干预等核心科学问题,中国科学院动物研究所刘光慧研究组、曲静研究组,中国科学院北京基因组研究所张维绮研究组,同北京大学汤富酬研究组联合攻关,利用多学科交叉的方法,在系统水平上揭示了哺乳动物多器官衰老的新型生物学标记物和可调控靶标。 在衰老机制解析方面,发现氧化还原通路稳态失衡是灵长类卵巢衰老的主要分子特征,为评价卵巢衰老及女性生殖力下降提供了新型生物学标志物,也为寻找延缓卵巢衰老的措施及开发相关疾病的干预策略提供了新思路。在衰老干预方面,阐明热量限制(“七分饱”)可通过调节机体各组织的免疫炎症通路,延缓多器官衰老的新型分子机制,揭示了代谢干预、免疫反应与健康寿命之间的科学联系。这些研究成果加深了人们对器官衰老异质性和复杂性的理解,为建立针对衰老及衰老相关疾病的早期预警和科学应对策略奠定了重要基础。 10. 实验观测到化学反应中的量子干涉现象 化学反应的进程伴随着复杂的量子力学现象,但其通常难以被直接观测到,因而化学反应的本质亦难以得到透彻的理解。 中国科学院大连化学物理研究所杨学明院士、张东辉院士、孙志刚和肖春雷研究团队提供了一个研究范例。他们研究发现,在H + HD→H2 + D反应中,在碰撞能量为1.9~2.2电子伏的范围内,产物H2(v'= 2,j'= 3)的后向散射呈现显著的振荡(其中v'是振动量子数,j'是转动量子数)。通过拓扑理论分析,发现该反应存在两条迥然不同的反应路径,振荡是由这两条路径之间的量子力学干涉所产生的。该研究揭示了该反应在较低能量处,量子几何相位效应仍然存在,并可以被观测到。这非常类似于众所周知的Aharonov-Bohm效应,清晰地揭示了化学反应的量子性。
  • 《《科学报告》2018 Top 100发布,中国作者3篇论文入选!》

    • 来源专题:科技大数据监测服务平台
    • 编译者:zhangst
    • 发布时间:2019-07-10
    • 2019年7月9日 ——自然科研(Nature Research)旗下多学科、开放获取期刊《科学报告》(Scientific Reports),最近公布了2018年阅读量最多的论文,进一步展现了该刊所发表的科研成果的影响力。《科学报告》是一本发表有严谨的科学性及技术扎实的原创研究的领先期刊。这些论文的完整列表发布于该刊所在的出版平台nature.com之上。 在覆盖全部学科的100篇全球阅读量最多的论文中,有3篇涉及中国作者: •《咖啡因导致静息脑熵普遍增加》(Caffeine Caused a Widespread Increase of Resting Brain Entropy); •《加权基因共表达网络分析在配对设计数据中的应用》(Application of Weighted Gene Co-expression Network Analysis for Data from Paired Design); •《白垩纪缅甸琥珀带来的湿热带森林青蛙的最早和直接证据》(The earliest direct evidence of frogs in wet tropical forests from Cretaceous Burmese amber)。 这3篇文章的阅读量居全球第31、53和54位,分别被阅读了10213次,7278次和7207次。 位居全球阅读量前3位的论文是: •《太平洋大型垃圾带正迅速积累塑料的证据》(Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic); •《基因编辑玉米对农艺、环境和毒理学特性的影响:对21年田野数据的荟萃分析》(Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data); •《面积不足5平方公里的受冲击林地数量是影响巴西亚马逊区域疟疾发病率的重要驱动因素》(Abundance of impacted forest patches less than 5km2 is a key driver of the incidence of malaria in Amazonian Brazil)。 这3篇论文的作者来自荷兰、新西兰、美国、英国、意大利和巴西等国家,分别被阅读了158421次,60517次和54081次。 这些被阅读次数最多的文章中,有许多涉及国际或国内科研合作,上述3篇涉及中国作者的论文中有2篇是由中美两国研究者合作完成的。科研合作的情况在其他阅读量最多的论文中也比较常见,这再次证明了合作,尤其是国际间合作,在科研领域已经无处不在。 《科学报告》还按学科发布了阅读量最多的100篇论文,即环境学、神经科学、微生物学、物理学、化学、细胞和分子生物学、肿瘤学、材料科学和地球科学。这些学科共有88篇论文涉及中国作者。 “对于我们所发表研究的质量及其可以实现的影响力,我感到十分自豪。”《科学报告》主编Richard White说。“我们的编辑并不评估研究的影响力,或者研究能引出怎样的发现——我们的角色是通过实施严格的同行评审流程来确保论文在技术上的可靠性。我们所发表内容的重要性是由其读者和使用者来决定的。这些很高的论文阅读次数表明了这些研究确实为更广泛的科研共同体带来了价值。” 与自然科研旗下的其他期刊一样,《科学报告》也提供文章层面的各项指标,例如每篇文章都设有页面提供文章的下载量、引用量和线上关注度(Altmetric分数)等数据,以显示文章所获得的关注度。 2018年,《科学报告》有5篇论文跻身Altmetric全球100篇文章之列,与《科学》、《自然》、《美国科学院院报》、《柳叶刀》等刊一样都有文章高居前20%之列。此外,《科学报告》的论文还被众多机构的200多个政策文件所引用,其中包括世界银行、世界卫生组织、美国疾病控制与预防中心、英国政府等。 本次论文排名是基于nature.com的网站数据分析。 关于自然科研 自然科研(Nature Research)提供一系列专门服务于科研共同体的优质产品与服务,涵盖生命科学、物理、化学和应用科学,包括了期刊、数据库和研究者服务等。 《自然》杂志(Nature)创建于1869年,是国际领先的科学周刊。此外,自然科研还出版一系列冠名“自然”的订阅型期刊、重要的多学科开放获取期刊《自然-通讯》(Nature Communications)、包括《科学报告》(Scientific Reports)在内的其它一些开放获取期刊,以及与科研机构和协会合作出版的自然合作期刊(Nature Partner Journals)。这些期刊同心协力,发表了世界上一些最重要的科学发现。 在线传播方面,每月有超过900万独立访客通过nature.com获取自然科研的内容,这包括《自然》新闻和评论,以及知名的科研人员招聘平台Nature Careers。自然科研还提供一系列研究者服务,如在线及面对面培训、专业语言润色和编辑服务等。自然科研是施普林格•自然集团的一部分。