《厚积薄发久为功——2021年世界科技发展回顾·基础研究》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2022-01-06
  • 俄罗斯

    启用贝加尔湖中微子望远镜

    首次室温下获得磁性超导材料

    科技日报驻俄罗斯记者 董映璧

    俄罗斯研究人员在建设贝加尔湖深水中微子望远镜。

    图片来源:俄罗斯卫星通讯社

    2021年,俄罗斯在基础研究领域的亮点是,在贝加尔湖中启用了北半球最大的深水中微子望远镜“Baikal-GVD”,用于记录来自天体的超高能中微子流,研究地球物理学、水文学和淡水生物学现象,探索宇宙的产生和进化过程。“Baikal-GVD”体积约半立方米,通过在贝加尔湖冰中凿出的一个长方形孔洞,这个高科技实验装置被安置在距离湖边约4000米、水深750—1300米的位置。 

    俄罗斯萨马拉大学首次描述了在宇宙化学进化中起最重要作用的有机分子在太空中的出现过程,所获数据扩展了关于生命出现的概念,并解释了合成有机物的“星际工厂”的运行机制。这一研究发现,最简单的多环芳(香)烃、茚可以在符合太空条件的温度下形成。含有多环芳(香)烃的小硬碳氢化合物粒子通常被称为星际种子,它实际上作为合成有机物(如氨基酸和糖)的分子太空工厂而运行。 

    莫斯科大学量子技术中心开通了一条量子安全通信线路,用于校内20个用户组网通信,用户之间最远距离为50公里。俄罗斯电信运营商TransTeleCom完成了莫斯科和圣彼得堡间的量子通信干线的建设工作。

    美国

    揭示缪子行为异常

    发现宏观量子纠缠直接证据

    科技日报记者 刘霞

    在基本粒子研究方面,费米国家实验室和中国科学家联合进行缪子反常磁矩实验,以前所未有的测量精度,揭示缪子的行为与标准模型理论预测不相符,为新物理的存在提供了强有力证据。由美国科学家主导的国际向前搜索实验(FASER)小组,通过分析欧洲大型强子对撞机(LHC)提供的数据,首次在LHC上发现了中微子的“蛛丝马迹”。 

    在量子技术领域,美国科学家今年可谓收获颇丰。美国国家标准技术研究所团队使用微波脉冲让两张小的铝片膜进入量子纠缠状态,发现了宏观物体量子纠缠的直接证据,有助量子网络、暗物质及引力波研究。哈佛大学和麻省理工学开发出可编程量子模拟器,能运行256个量子比特,有助科学家在材料科学、通信技术等多领域实现重大突破。IBM公司宣称,其已经研制出一台能运行127个量子比特的量子计算机“鹰”,这是迄今全球最大的超导量子计算机。

    来自能源部SLAC国家加速器实验室等的科学家首次直接观察到了临近水分子之间的“量子拖拽”。 

    另外,美国和新西兰科学家利用激光挤压并冷却锂气体等,使其密度和温度变化到足以减少光散射量的程度,由此证明了泡利阻塞效应,未来有望利用其开发能抑制光的材料,进一步提高量子计算机的性能和效率。

    哈佛大学物理学家团队通过实验模拟并分析了一种新物质状态——量子自旋液体,其在高温超导和量子计算机等量子技术领域有着广阔的应用前景。

    法国

    提出新的量子计算机构架

    揭秘宇宙诞生“第一种物质”

    科技日报驻法国记者 李宏策

    法国于2021年1月宣布启动量子技术国家战略,计划5年内在量子领域投资18亿欧元,争取让法国有机会成为“第一个获得通用量子计算机完整原型的国家”。该战略认为,完全掌握量子技术价值链是法国持久独立研究的关键,对法国专有技术和工业应用方面的主权至关重要。为此,该战略旨在为法国量子领域全价值链提供支持,涉及所有量子相关技术。法国正在建立以巴黎、萨克雷、格勒诺布尔为中心的量子生态系统。 

    量子研究方面,法国团队提出了新的量子计算机构架,在传统的二维阵列量子比特上连接一个量子记忆体,形成三维架构,从而实现大幅降低量子计算机所需的量子比特数量。新架构下仅需13436个量子比特就能破解当前主流的2048位RSA加密,比此前研究中所需两千万个量子比特数减少了3个数量级,这为量子计算机架构设计提供了新方向。 

    欧洲核子研究中心(CERN)频频有重要发现。该中心的超环面仪器实验(ATLAS)和紧凑缪子线圈实验团队于2月发现了希格斯玻色子衰变为两个轻子(带相反电荷的电子或μ子对)和一个光子——“达利兹衰变”的首个证据,有助科学家发现新物理学。 

    3月,该中心的ALPHA合作组首次用激光冷却技术成功冷却了反氢原子,为更精确测量反氢内部结构及其在引力作用下的行为奠定了基础。将这些测量结果与氢原子比较,可以揭示物质原子和反物质原子之间的差异,为反物质研究带来新视角。该中心的大型强子对撞机(LHC)发现了4种全新的粒子,它们是4种不同的四夸克态。迄今为止,LHC共发现59种新强子。此外, 

    6月,该中心利用LHC重现了宇宙大爆炸第一个0.000001秒内存在的唯一物质夸克—胶子等离子体(QGP)。研究发现,夸克—胶子等离子体具有光滑柔软的质地,这与此前的预测以及所知道的任何其他物质都不同。

    7月,该中心大型强子对撞机底夸克(LHCb)实验团队发现了一种新物质粒子Tcc+,这个4夸克粒子是一种奇异强子,是迄今最“长寿”的奇异物质粒子,也是首个包含2个重夸克和2个轻反夸克的粒子,由2个粲夸克和1个反上夸克、1个反下夸克组成。这一发现有助对标准模型理论开展测试并揭示新现象。 

    12月,在LHC的新探测器进行试运行时探测到中微子,这是首次在粒子加速器内部发现中微子。 

    德国

    推出欧洲首台量子计算机

    精确控制原子核量子跃迁

    科技日报驻德国记者 李山

    德国弗劳恩霍夫协会与IBM公司合作研发的欧洲第一台商用量子计算机正式面市。这台有27个量子位的计算机的基本粒子部件由美国IBM生产,冷却系统来自芬兰,控制系统在德国研发。与此同时,德国在下萨克森州的“量子谷”组建一个国际团队,基于一种可使离子单独存在并被存储的基础技术开发新的量子计算机。此外,德国政府部门首次通过量子通信技术在柏林和波恩之间举行了视频会议。

    以国家大科学工程为核心的亥姆霍兹联合会下属各中心继续开拓前进。例如,于利希研究中心通过使用4个特殊的尖端扫描隧道显微镜,首次实现直接测量超薄拓扑绝缘体中存在的非凡电性能;开发了一种微型红外探测器,可使用压控开关控制两个不同的红外波段的光谱响应。柏林亥姆霍兹中心(HZB)研发可精确测量“台式粒子加速器”的电子束横截面的方法,推动新的加速器技术在医学和研究中的应用。卡尔斯鲁厄理工学院研发新型法布里—珀罗谐振器,可追踪纳米颗粒在空间中的运动,可用于蛋白质、DNA折叠或病毒的表征;开发了一种新型气体分子传感器,可精确实现分子特异性检测。 

    以基础研究为主要任务的马克斯·普朗克学会下属各个研究所也硕果累累。例如,量子光学研究所首次在不同实验室分隔的量子模块间实现量子逻辑运算,为分布式量子计算开辟了新的发展路径。智能系统研究所录制了世界首个时空晶体视频。生物物理化学研究所开发出新的光学显微镜方法,能够分辨间隔只有几纳米的单个分子。煤炭研究所研制出在室温和普通大气压下合成氨气的新方法。核物理研究所首次利用X射线精确控制了原子核的量子跃迁。光学研究所设计了一种实验,在检测光子的同时能够避免光子淬灭。分子细胞生物学和遗传学研究所发现,岩石孔隙中的气泡可能是早期地球生命的摇篮。 

    德国科学家在一枚探测火箭上首次成功实现了太空原子干涉测量。鉴于原子干涉仪可利用原子的波动特性开展极精确测量,如测量地球的引力场或探测引力波等,新研究有望更精确探测引力波。 

    英国

    首用纠缠光子编码信息成全息图

    详细测量格陵兰岛冰川温度

    科技日报记者 张佳欣 

    在量子领域,英国格拉斯哥大学的物理学家首次找到使用量子纠缠光子将信息编码为全息图的方法。这一新型量子全息术突破了传统全息方法的局限性,使将来有可能创建更高分辨率、更低噪声的图像,帮助研究人员更好地揭示细胞细节,进一步了解生物学在细胞水平上的功能。

    此外,格拉斯哥大学领导的国际研究小组还发现,地上的水可能来自“天上”——太阳。太阳风由来自太阳的带电粒子(主要是氢离子)组成,在太阳系早期撞击地球的小行星所携带的尘埃颗粒表面产生了水。

    布里斯托大学量子工程技术实验室的研究人员解释了一种通过充当自主代理,使用机器学习对哈密顿模型进行逆向工程的算法。这种新算法对量子系统基本物理原理提供了宝贵见解,有望带来量子计算和传感领域的重大进步,并有可能翻开科学研究的新篇章。 

    英国剑桥大学领导的国际研究小组利用光纤传感技术,让激光脉冲通过光纤光缆传输,对格陵兰岛冰川的温度进行了迄今最详细测量,获得了从冰川表面直到冰面下1000多米底部非常详细的温度测量结果。这项研究将有助科学家对世界第二大冰川的未来变动情况进行更精准建模,从而更好地应对气候变暖。 

    日本

    首次精确测量超重元素质量

    明确纳米级磁性斯格明子晶体机制

    科技日报驻日本记者 陈超

    3月,日本Mercari公司、东京大学和大阪大学研究人员计划在5年内建立起采用新方式的短距离通信网,以实现一个“绝对安全”的量子互联网。该“量子互联网特别工作组”在2月份公开的业务计划书中,公布了建立量子互联网测试环境的方案。

    日本高能加速器研究机构(KEK)、理化学研究所及九州大学等组成的国际联合研究团队,利用理研的重离子加速器设施“RI Beam Factory”(RIBF)中的充气式反跳核分离器(GARIS-Ⅱ)和多反射型飞行时间测量质谱仪(MRTOF),成功地精确测量出了原子序数为105的超重元素Db同位素257Db的质量。 

    8月,东京大学明确纳米级磁性斯格明子晶体机制,为开发新物质提供了设计方向。东京大学的研究团队构建了一个包含源自手性晶体结构的反对称交换作用和源自巡游电子系统的自旋—电荷相互作用的微观模型,通过数值模拟分析,在理论上确认了纳米级磁性斯格明子晶相可以稳定存在。这项研究中的设计思路,有助于在利用磁性斯格明子高度集成所产生的巨大突发磁场的自旋电子器件领域取得进展。 

    韩国

    出台法律强化对量子技术支持

    超导核聚变装置运行创纪录

    科技日报驻韩国记者 邰举

    韩国正式出台《促进信息通信振兴及融合等相关法律》,将政府对量子技术的支持法律化。根据立法,韩国将在政府财政支持的基础上,建立量子技术专职管理机构,在政策研究、研发支持、基础设施建设、人力培养、技术标准化等方面发挥主导作用,同时,还计划加大力度培育量子研发和产业生态,向中小企业提供财政及行政支持。

    韩国超导核聚变装置KSTAR成功在1亿℃温度下约束等离子体30秒,创下了新的运行纪录。 

    韩国一个共同研究小组开发的一种量子比特技术逻辑错误率达到10万分之一。

    韩国研究者参与的一项国际共同研究第一次发现了一种表现出光子雪崩效应的纳米材料,具有全新应用前景。 

    韩国实验物理学家证实了理论物理学界预言的一种液态金属的电子结构。 

    以色列

    国家计划作为支撑

    全面发力量子领域

    科技日报驻以色列记者 胡定坤

    今年3月,以色列国防部和创新局称将投资6000万美元建立以色列首个量子计算机,计算能力约为30—40量子比特。该项目是以色列2019年推出的“国家量子能力计划”的一部分,该计划将在量子领域投资3.8亿美元。除发力量子计算领域,该计划还向5家公司和8个学术团体投资4000万美元,推动量子雷达等新型量子传感器的研究,其中本古里安大学已研制出一个紧凑、坚固的冷原子钟和一个灵敏的磁原子传感器。 

    以色列希伯来大学研究团队开发出一种微小的荧光晶体,称为“量子点”,被安装在金色的“纳米针头”上,当荧光晶体被激光照射时会发出单光子流,并在经过一种特殊光栅后沿单方向射出。该团队目前正在改进相关设备,以便提供更可靠、更高效的单光子流,使其能广泛用于量子加密技术。 

    乌克兰

    发明基于超材料的射频检测器

    新不透明闪烁介质能检测粒子

    科技日报驻乌克兰记者 张浩

    2021年3月,乌克兰科学院放射物理与电子研究所发明了一种基于超材料的射频非接触式检测器,可用于检测乙醇水溶液中是否含有甲醇。研究人员使用所谓的超材料作为探测器,将装有被研究液体的容器置于金属间膜附近并激发其共振场,使用电动力学公式描述相应的相互作用。这意味着,如果特性未知的天然物质与特性已知的超材料发生电磁接触,就能够通过标准微波技术和设备记录超材料的特性来识别特性未知的天然物质,这一方法目前尽管还处于实验室阶段,但被认为应用前景广阔。 

    在粒子研究领域,过去几年里乌克兰国家科学院闪烁材料研究所一直在开发一种新的不透明闪烁介质,用于充当高能物理实验中的检测粒子。欧洲核子研究中心(CERN)认为这项研究很有前景,在2021年决定邀请乌克兰科研团队参加大型强子对撞机底夸克实验(LHCb),该项目是乌克兰基础科学领域近些年受到国际瞩目的重大实验项目之一。 

相关报告
  • 《2018年世界科技发展回顾》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-01-03
    • 信息技术 美国 先进计算加速发展,新型元件成绩斐然 本报驻美国记者 刘海英 量子计算方面,英特尔公司2018年1月宣布开发出49量子位测试芯片Tangle Lake。此后科学家不断推出新研究成果:证明“自旋—光子强耦合”可让单独量子比特相互作用、制造出可作量子中继器的有瑕人造钻石、构建模块化量子计算架构关键组件、开发出使碳纳米管成为量子单光子源的方法等,有力推动了量子计算系统的开发。美国国家科学技术委员会9月发布《量子信息科学国家战略概述》,志在推动量子信息科学加速发展。 超级计算机方面,“顶点”和“山脊”两台计算机在最新一期全球超级计算机500强榜单中分获冠、亚军,极大增强了美在超算竞争中的底气;能源部4月推出耗资18亿美元的百亿亿次级超级计算机开发计划,更表明美追求超算领域国际领导地位的决心。 此外,美科学家在计算机元器件研发方面也成绩斐然。可将数据中心带宽提高10倍的光电子芯片、具有精准分发光信号能力的硅芯片、基于内存计算技术的AI芯片、可同时存储和处理信息的记忆晶体管等新型元器件的问世,为新型计算机开发打下了坚实基础。 日本 量子技术全面进步,存储理论有新突破 本报驻日本记者 陈 超 大阪大学、NTT和东京大学的研究小组首次验证了由冷却原子构成的量子存储器与光纤网络构成可通信波段光子的量子网络。该研究成果展示了一条实现量子中继的新道路,为实现量子网络的远程化开辟了新途径,具有抵御利用量子计算机实施的黑客攻击能力的新一代量子密码安全通信又向远程化迈出了一步。 横滨国立大学利用金刚石中氮空位中心的电子和核子的自旋作为量子比特,全球率先成功实现了室温下完全无磁场的条件下的万能量子门操作。这种独特的量子比特完整量子门操作被命名为几何学量子比特,能以更高的速度进行高精度运算。 日本理化学研究所和北海道大学等组成的联合研究小组,发现在没有外部磁场的状态下也会产生磁涡旋,并查明了磁涡旋的形成机制。科学家有望以此为基础,研发以磁涡旋为信息载体的磁存储单元。 德国 量子计算重点发力,基础研究瞄准未来 本报驻德国记者 顾 钢 2018年,德国在量子计算机领域又有新的进展,康斯坦茨大学领衔的团队开发出了一种基于硅双量子位系统的稳定的量子门,这项研究成果被称为通向量子计算机的里程碑;弗劳恩霍夫应用固体物理研究所开发出了一种微磁场下应用的量子传感器,可用于未来计算机硬盘识别。 在信息技术基础研究领域,卡尔斯鲁厄理工学院的研究团队开发出了完全由金属构成的单原子晶体管,为未来信息技术开辟了新的应用前景;凯泽斯劳滕技术大学科学家首次展示了如何在集成振幅回路中使磁子形成电流,这一研究打开了未来磁子芯片的大门。 英国 拟建5G测试平台,超级计算模拟人脑 本报驻英国记者 郑焕斌 2018年9月,英国政府宣布,将以西米德兰兹地域的伯明翰、考文垂、伍尔弗汉普顿3个城市为中央,设立相关测试平台,以建设较大规模的5G试点网络。 11月初,英国曼彻斯特大学科学家激活了世界上最强“大脑”——一台拥有100万个处理器内核和1200个互连电路板的超级计算机,它能像人脑一样运作,是迄今最准确模拟人脑的超级计算机。 韩国 基础设施位居前列,技术研发多有亮点 本报驻韩国记者 邰 举 信息技术是韩国的优势领域。韩国的信息技术基础设施继续位居前列。2018年年初平昌冬奥会之前,韩国建成了大规模5G试验网络,预计于2019年初期实现商用化,这一计划进展迅速。 在量子计算领域,韩国学者开发出一种量子弱测量方法,克服了海森堡不确定原理的限制,可以有效应用于量子计算机的运算过程。韩国企业成功研发出处理器“Exynos9”,其搭载了借鉴人类大脑结构的新概念人工智能芯片,可用于手机终端并行处理大量多媒体数据。韩国开发的广视角全息图像技术将信息储存量提升了100倍。 以色列 网络安全齐头并进,无人驾驶安全先行 本报驻以色列记者 毛 黎 以色列证券管理局表示,其已开始使用区块链技术应对网络安全挑战。信息公司塔尔多经过3个月时间开发出管理局所需的区块链软件系统。以美两国研究人员开发出可从包括“脸书”和“推特”在内的大多数社交网上发现假账户的通用方法,其在网络安全等领域具有广泛的应用潜力。 为应对汽车电子系统安全性面临的挑战,以色列Arilou公司研发的并行防侵入系统(PIPS)能够通过主动拦截来自汽车被“黑”电控单元的恶意指令,保护车辆整个网络的安全;GuardKnox公司借助战机和防空导弹系统的安全理念,为车辆提供了自动安全保护措施,在确保正常通信的同时,阻止包括网络攻击在内的任何不当信息的传递。 俄罗斯 量子计算蓄势待发,超级计算获得突破 本报驻俄罗斯记者 亓科伟 2018年,俄加大对量子计算机和量子通信技术的研发力度:2月在索契召开的“2018俄罗斯投资论坛”期间,俄对外经济银行、VEB创新公司、前景研究基金会、莫斯科国立大学和非营利组织“数字经济”签署协议,计划在5年内研制出50个量子比特的量子计算机;莫斯科物理技术学院科研团队选取碳化硅作为量子发射材料,研发出新型量子发射器,每秒可发射几十亿个单量子,可保证G量级的比特传输速度,未来可用于构建信息安全性更高的量子通信网络。 超级计算机方面,俄杜布纳联合核子研究所3月建成了新型超级计算机“格沃伦”,其理论浮点运算峰值为每秒1000万亿次(单精度)或500万亿次(双精度)。 乌克兰 信息产业老骥伏枥,智能监测威力强劲 本报驻乌克兰记者 张 浩 乌克兰国家航空大学2018年7月研发出一款新型智能监测接收系统。该智能监测接收系统可查找和设置辐射源参数,在规定频段内对无线电信号的使用进行监测,确定来自不同发射器的接收点处的场强;测定散热器的参数和辐射源的坐标,识别散热器、辐射源类型;监测雷达站、指导站、飞机与机场通信设施的无线电信标等。该系统还可进行GSM、GPRS和CDMA通信,对流层散射和卫星通信以及民用无线电、电视信号通信等。根据乌方发布的信息,该设备具有质量轻、功耗低、信号分析速度快、准确性高且便于携带的优势。 人工智能与先进制造 美国 AI应用扩大需警惕风险,3D打印技术潜力可期 本报驻美国记者 刘海英 2018年美国在人工智能领域依然占据全球领先地位,科学家开发出多种新算法,达成创建“可视化”人工神经网络、追踪动物运动及行为、识别地震后余震出现地点、预测基因组修复结果等目标,逐步推动人工智能向前发展。同时,人工智能应用范畴逐渐扩大,尤其是在医疗领域,食品和药物管理局首次批准利用人工智能的医疗设备上市销售,让人们对医疗领域人工智能应用充满期待。而2000多名人工智能领域专家共同签署《禁止致命性自主武器宣言》,揭示人工智能发展可能带来的道德及现实风险,则再次警示世人应理性发展人工智能。 借助新材料、人工智能等技术的进步,3D打印为代表的先进制造技术稳步发展。《增材制造标准化路线图2.0版》的推出,为美制定相关技术标准奠定坚实基础。而可直接在皮肤上进行3D打印的技术的出现,可跟踪和存储使用方式的3D打印器件的研发,以及3D打印生物工程脊髓、磁活化材料等成果,都表明3D打印技术潜力仍在。此外,利用光热合成石墨烯纳米带、利用声波制造超微型光二极管、从聚合物化学反应中获取能源制造聚合物等新技术的出现,为美未来先进制造进一步发展奠定了基础。 德国 “工业4.0”战略持续推动,制造业更智能更高效 本报驻德国记者 顾 钢 智能制造在汽车工业的应用是德国工业4.0战略的重要领域,2018年在联邦教研部的资助下,学院、科研院所与企业合作,在大学内创建了研发园ARENA2036,探索汽车先进制造和轻质结构及测试问题。未来的制造将不再是同质和线性,工厂需要满足更多个性化的需求。 德国弗劳恩霍夫协会所属研究所研发的ANNIE移动操作平台适用于人与机器人协作的复杂生产场景,该平台具有感知、导航、安全、软件架构和交互等功能,拥有认知能力的机器人可以独立地执行任务。 为了降低能耗,提高设备使用效率,弗劳恩霍夫研究所IFF开发了可分析预测电负荷曲线的方法“FlexChem”,通过软件的分析和高峰负荷预测,可大大降低制造成本,并能在利用可再生能源时确保电网的稳定性。 日本 验证AI设计材料实用性,制成低噪音有机晶体管 本报驻日本记者 陈 超 2018年3月,富士通株式会社和日本理化学研究所宣布,他们的联合研究小组在材料设计中应用第一原理计算与人工智能技术,对全固态锂离子电池的固体电解质组成实施了预测、合成与评价试验,并进行了实际验证。此外,水户市与NEC启动实验,利用人工智能提高办公效率和加强内部治理。 日本东北大学等确立铁—镓(Fe—Ga)单晶板材的低成本量产技术。作为磁致伸缩材料之一的铁—镓单晶是一种非常优异的能量转换材料,是小尺寸、高输出和高灵敏度的振动发电元件的基础材料。振动发电如果走向实用化,就能实现不使用纽扣电池和干电池的无线通信模块,便利性将大幅提高。 东京大学将有机半导体制成墨水,利用印刷技术,成功制作出了全球噪声最低的有机晶体管,有望提供实现物联网社会所需的低成本、高灵敏度传感器件。 俄罗斯 拓展人工智能应用,4D雷达用于无人驾驶 本报驻俄罗斯记者 亓科伟 俄科学院科拉科学中心建立了矿物成分评估人工神经网络,通过学习,神经网络仅凭矿样的化学成分即可确定其矿物成分,并自动生成三维矿产资源图;俄罗斯和以色列合作,使用人工智能来准确诊断和治疗心律不齐;俄法律从业公司推出基于人工智能的机器人律师,其神经网络建立在世界最大的10万个法律问题数据库上,能解答超过2000个问题。 俄施瓦布集团公司下属企业研发出一款3D眼镜,集识别目标、判定所处方位及操控机器人等功能于一体,可显著提高操控机器人的精度。 无人驾驶方面,认知技术公司宣布成功研制出世界首台4D雷达。与激光雷达不同,4D雷达可在恶劣的天气条件下工作,创建道路场景的四维地图并提高数据更新频率,以更高的精度识别移动物体。 韩国 设立人工智能基金,开发软体机器人和机械臂 本报驻韩国记者 邰 举 信息通讯公司与智能手机企业联手推出了使用物联网技术的折叠式电动自行车“AIR i”;三星电子建立了人工智能专项基金“Q基金”。不过,也有国际著名学者质疑韩国科学技术院推进人工智能武器研究的做法。 韩国大学团队开发出使用仿真皮电子皮肤的软体机器人,该电子皮肤在硅胶类物质中安装芯片与电路,机器人可通过便捷的操作完成自由且连续的动作。韩国研究小组借鉴折纸技术成功开发出了可大幅伸长同时能够保持强度的“加杰特”超级机械臂。 以色列 扩大无人机应用,开发声音机器人 本报驻以色列记者 毛 黎 以公司通过实地飞行展示了其自主无人机“麻雀I”的能力,并认为随着监管继续放开,无人机在商业和工业市场中的应用范围将大幅上升。 以公司研发的“鸬鹚”单引擎无人驾驶电动飞行器公开亮相,并受到军方青睐。该无人飞行器大小如同小卡车或面包车,采用螺旋桨起降和前行,能在复杂环境下执行救援任务。 以色列公司推出的自动驾驶仿真系统,能够帮助汽车制造商快速开发、测试、验证其无人驾驶汽车,并让它们安全上路。 受蝙蝠启发,研究人员开发的完全自主地形机器人能像蝙蝠一样发出声音并分析回声,以识别、绘制和避开户外障碍物。 研究人员找到利用3D打印机生产不同形状药物胶囊的新方法。与传统的胶囊相比,针对用户特点的3D打印异形胶囊能被更有效地吸收。
  • 《任正非:加大基础研究投入,创新引领科技发展》

    • 来源专题:科技大数据监测服务平台
    • 编译者:zhoujie
    • 发布时间:2020-08-31
    • 7月29日至31日,华为公司创始人、CEO任正非带队访问上海交通大学、复旦大学、东南大学和南京大学。访问期间,他就基础研究、产学研结合、科研创新和人才培养等问题谈了自己的看法。 ■ 华为为何要搞基础研究? 信息技术的发展速度太快了,传统的产学研模式赶不上市场需求的发展速度。因此华为公司也进行了一些基础理论的研究,大多数是在应用理论的范畴,只有少量的走在世界前面去了。 大学老师的研究是为理想而奋斗,目标长远,他们的研究是纯理论要素研究。例如,土耳其Arikan教授一篇数学论文,十年后变成5G的“熊熊大火”;上世纪六十年代初,苏联科学家彼得·乌菲姆采夫发表的一篇“钻石切面可以散射无线电波”的论文,20年后美国造出了隐身的F22战斗机;上世纪五十年代,中国科学院吴仲华教授的三元流动理论对喷气式发动机的等熵切面计算法,奠基了今天的航空发动机产业;现代化学分子科学的进步,人类合成材料可能由计算机进行分子编辑来完成,这也是一个翻天覆地的技术变化。 ▲ 华为方舟实验室(资料图) 高校的“明灯”照耀着产业,大学老师的纯研究看得远、钻得深;华为公司的研究实用度强。在我们之间的合作中,你们给我们带来方向,照亮了我们。华为公司的基础研究是围绕商业目的的,比较贴近近期的实用化,我们给你们带来客户需求以及行业所面临的世界级难题,知道这个方程的价值与应用,相互之间都是有益的。合作使我们早一些知晓世界的发展动向,缩短了商品化的时间,我们能超前世界,就会获得更好的机会。 ■ “校企合作要松耦合,不能强耦合。” 高校的目的是为理想而奋斗,为好奇而奋斗;企业是现实主义的,有商业“铜臭”的,强耦合是不会成功的。强耦合互相制约,影响各自的进步。“强耦合你拖着我,我拽着你,你走不到那一步,我也走不到另一步。因此,必须解耦,以松散的方式合作。” ■ “求生欲使我们振奋起来,寻找自救的道路。” 在“灯塔”的照耀下,整个世界都加快了脚步,今天技术与经济的繁荣与英、美、日、俄、欧洲当年的技术灯塔作用是分不开的。我们要尊重这些国家,尊重作出贡献的先辈。孔子都过去两千多年了,我们还不是在尊孔吗?不管这些专利保护是否已经过期,先贤是值得尊重的。 我们公司也曾想在突进“无人区”后作些贡献,以回报社会对我们的引导,也想点燃5G这个“灯塔”,但刚刚擦燃“火柴”,美国就一个“大棒”打下来,把我们打昏了,开始还以为我们合规系统出了什么问题,在反思;结果第二棒、第三棒、第四棒打下来,我们才明白美国的一些政治家希望我们死。 求生的欲望使我们振奋起来,寻找自救的道路。无论怎样,我们永远不会忌恨美国,那只是一部分政治家的冲动,不代表美国企业、美国的学校、美国社会。我们仍然要坚持自强、开放的道路不变。你要真正强大起来,就要向一切人学习,包括自己的敌人。 ■ “中国的未来与振兴要靠孩子,靠孩子唯有靠教育。” 人类社会的下一个文明是什么?还会不会产生一个类似汽车、信息产业这样的产业?我说的“汽车”是泛指,包括飞机、轮船、火车、拖拉机、自行车;“信息产业”也不仅指电子工业、电信互联网、人工智能。 未来技术世界的不可知,就如一片黑暗中,需要灯塔。点燃未来灯塔的责任无疑是要落在高校上,教育要引领社会前进。对未来的不确定性,认识它的艰难,应对这种不确定性,除了给科研更多一些自由、对失败更多一些宽容外,应对不确定性的确定可以从孩子们的教育抓起,中国的未来与振兴要靠孩子,靠孩子唯有靠教育。 多办一些学校,实行差别教育,启发他们的创新精神,就会一年比一年有信心,一年一年地逼近未来世界的大门。二、三十年后,他们正好为崛起而冲锋陷阵,他们不是拿着机关枪,而是拿着博士的笔。我今天看见你们这么多人坐着冷板凳,研究出这么多理论与技术成果,出了这么多优秀的人才,我很兴奋,相信我们国家在二、三十年以后或者五、六十年之后,一定会大有作为的,为人类作出更大的贡献,希望寄托在你们身上。 ▲ 任正非(资料图) ■ “我们需要创新,找到一个一个的机会点。” 我们需要创新,找到一个一个的机会点。如果我们把英国工业革命的指数定为100的话,美国今天是150,我国是70,中国缺的30是原创,原创需要更严格的知识产权保护。没有原创就会陷入中等收入陷阱,房屋、汽车都会饱和的,饱和以后如何发展?不发展,一切社会问题都会产生。 我们公司过去是依托全球化平台,集中精力十几年攻击同一个“城墙口”,取得了一点成功。我们过去的理论基地选在美国,十几年前加大了对英国和欧洲的投入,后来又增加了日本、俄罗斯的投入。美国将我们纳入实体清单后,我们把对美国的投资转移到俄罗斯,加大了俄罗斯的投入,扩大了俄罗斯的科学家队伍,提升了俄罗斯科学家的工资。 我们希望十年、二十年后,我国的大学担负起追赶世界理论中心的担子来。我们国家有几千年儒家文化的耕读精神,现在年轻妈妈最大的期望是教育孩子,想学习、想刻苦学习,这都是我们这个民族的优良基础,我们是有希望的,中国是可以有更大作为的。 本文来源:上海交通大学、复旦大学、新闻联播