《为植物合成生物学的应用获取所需的DNA部件》

  • 来源专题:耕地与绿色发展
  • 编译者: 张毅
  • 发布时间:2024-10-24
  • 2024年6月,美国北卡罗来纳州立大学讨论了在植物生物学研究中,转基因技术的标准化应用,以及DNA部件选择和转基因设计优化的重要性。该综述旨在提供关于当前用于识别和表征具有所需功能性的DNA部件的方法的信息,并就基本构建设计给出一般性建议。相关成果以Sourcing DNA parts for synthetic biology applications in plants发表在《Current Opinion In Biotechnology》上。
  • 原文来源:https://www.sciencedirect.com/science/article/abs/pii/S0958166924000764?via%3Dihub
相关报告
  • 《合成生物学:生命科学的“利器”》

    • 来源专题:转基因生物新品种培育
    • 编译者:王晶静
    • 发布时间:2020-11-26
    • 人类进入21世纪以来,一门新兴的交叉学科“合成生物学”成为国际科学前沿一大热门。合成生物学,能利用大肠杆菌生产大宗化工材料,摆脱石油原料的束缚;酵母菌生产青蒿酸和稀有人参皂苷,降低成本,促进新药研发;工程菌不“误伤”正常细胞,专一攻击癌细胞;创制载有人工基因组的“人造细胞”,探究生命进化之路;利用DNA储存数据信息并开发生物计算机……作为科学界的新生力量,合成生物学进展迅速,并已在化工、能源、材料、农业、医药、环境和健康等领域展现出广阔的应用前景。 探究生命起源演化 解读“密码”改造自然 生命是世界上最复杂的物质存在。人类自诞生以来,就在认识生命的漫漫长途中上下求索。从中国古代的《黄帝内经》和《本草纲目》,到西方近代博物学家对动植物分类,人类对于生命现象的认识,都是从对生命体的“宏观”观察、“表观”描述而获得的经验型逻辑总结。另一方面,对于譬如尿素之类的“有机物”,化学家们也认为只能由生物体在一种神秘的“生命力”作用下产生。 1828年,德国化学家弗里德里希·维勒无意在无机实验中合成了尿素,揭开了人工合成有机物的“合成化学”序幕。也就是从19世纪后期到20世纪前半叶,基于数理化技术与方法的实验科学催生了认识生命共同本质的细胞生物学、生物化学、遗传学和发育生物学,而进化论的诞生,则最先将人类对生命的认识,提升到了理论的高度。 20世纪中叶,随着DNA双螺旋结构的发现,分子生物学“中心法则”的确立,人类开始找到生命现象的“密码本”。而生命另一类基本分子,具有生理活性的蛋白质牛胰岛素一级结构的解析,直接导致了我国科学家于60年代完成其全人工合成,即世界上首次人工合成蛋白质。在同一时代,DNA测序技术的建立,实现了人类“读基因”的梦想;DNA重组技术的建立,实现了人类“写基因”的梦想;再加上在基因定向突变与敲除基础上的“编基因”梦想的实现,分子生物学及基因工程技术在上世纪80年代,将生命科学推向了历史上第一次革命的顶峰。 至20世纪末,人类基因组计划带来了第二次革命,实现了基因组的全面“解读”,人类对生物体组成和生命规律的认识达到了前所未有的系统生物学的深度和定量生物学的精度。2010年,科学家合成约100万碱基的支原体基因组,并将其转入另一种支原体细胞中,获得可正常生长和分裂的“人造生命”,实现了“撰写”基因组的梦想。此后,科学家又合成了非天然核苷酸、非天然氨基酸;并采用“编辑”基因组的手段,创建出人造单染色体真核细胞……人类掌握了“读”“写”“编”基因组的技术手段,获得了设计与合成生命的能力,200年前盛行于世的“生命力”学说被完全克服。 什么是合成生物学? 有什么样的认识(科学)和手段(技术)就有什么样的工程。古代,通过“尝百草”检验植物药性,建立中药体系,通过人工驯化与优选,获取种质资源,建立畜牧业与农业体系,都是利用当时的生物认识和生物技术,造福人类的典型工程实践。今天,怎样利用对生命“密码本”的认识及对其“编写”的手段,改造自然、造福人类?21世纪初, 科学家们将工程科学的研究理念融入现代生命科学,发展出以合成生物学为代表的“会聚”研究,促成了生命科学的第三次革命。 合成生物学采用工程学“自下而上”的理念,打破“自然”和“非自然”的界限,从系统表征自然界具有催化调控等功能的生物大分子,使其成为标准化“元件”,到创建“模块”“线路”等全新生物部件与细胞“底盘”,构建有各类用途的人造生命系统。这一与系统生物学“自上而下”解析理念相反的合成理念,也将我们习以为常的“格物致知”研究策略,推进到了“建物致知”的新高度。这样,进化过程中“猜测”的祖先物种或分子体系,将可能被合成,并加以定向的诠释;而被各种“假说”“对照”分割研究的复杂生命现象,也可以实现整合的定量研究,解析因果机制。 合成生物学采用工程学“设计—合成—测试”的研究方法,在学习抽象自然生命系统的基础上,或对自然生物系统“重编程”,或重头设计具有全新特征的人工生命体系;然后,利用“基因编辑”“基因合成”等“工具包”,用实验方法来构建,再对构建出来的生物系统进行测试,如此反复循环优化,形成了一个正向可靠的科学闭环。建筑在如此大规模通用化工程平台基础上的合成生物学,往往也被称为“工程生物学”,它“建物致用”的工程能力,有望为解决健康、能源、粮食、环境等重大问题做出新贡献。 破解资源环境难题 赋能人类健康事业 当前,资源短缺、环境污染、气候变化等全球问题日益凸显,合成生物技术为实现“社会—生态/环境—经济”和谐发展提供了全新解决方案。 石油是储量有限的不可再生资源,迟早有枯竭的一天,这是人类生存发展必须严肃应对的问题。在理论上,绝大多数石油化学品都能够借助合成生物学技术制得,人们还可通过生物合成技术制造出传统化工无法合成的新燃料。同时,合成生物学在人工固碳、利用二氧化碳方面取得进展。例如,科学家通过对细菌进行人工优化和改造,建造可将大气中的二氧化碳转化为酮、醇、酸等化学品的“细胞工厂”,实现二氧化碳等资源的高效综合利用,推动建立低能耗、低污染、低排放的低碳经济模式。 随着全球人口不断增长,环境污染加剧和气候持续变化,人类食品和环境安全面临巨大挑战。利用合成生物学技术,创建适用于食品工业的细胞工厂,将可再生原料转化为重要食品组分,这被认为是解决食品问题的可行途径。在农业生产中,氮肥使用量大幅增加带来的土壤板结和酸化等问题,可以通过合成生物学“微生物固氮”技术得以有效解决。在环境治理领域,可以通过“定制”微生物去除难降解的有机污染物,也可开发出人工合成的微生物传感器,帮助人类监测环境,设计构建能够识别和富集土壤或水中的镉、汞、砷等重金属污染物的微生物,以大幅提升污染治理效能。 合成生物学在生命健康领域也有广阔的用途,不仅能够用于天然产物等医药产品的生产,还能在疾病研究模型的开发、生物标志物监测、干细胞与再生医学等领域发挥巨大作用。例如,人体肠道内具有丰富多样的微生物,合成生物学为肠道微生物的改造提供了工具:一方面,可以设计改造对人体有益的细菌,让它们生产人体自身不能合成的维生素等营养物质;另一方面,可以设计出感知肠道环境变化的“智能微生物”,对人体内的健康状态进行检测和诊断。 在抗击新冠肺炎疫情中,合成生物学技术发挥了重要作用,展现了强大应用潜力。例如,利用DNA条形码技术改进测序流程、利用基因编辑技术开发核酸诊断试剂,提高诊断的准确性和灵敏度。利用合成生物学技术还可以寻找潜在的小分子药物、开发疫苗,以及通过调节人体微生物组来激活人体免疫系统,提高人体抗病毒能力。 改造生命的目的,是为了更好地认识和调控生命现象,使之为改善生态、提高人类生命生活质量服务。未来,在人工智能和大数据等新技术推动下,合成生物学将赋予人类更强的“改造自然,利用自然”的能力,当然,同时也会带来社会伦理与安全等新问题。我们必须在思想上明确该做什么,怎么做才是正确的;在做好风险评估并开发防控风险的技术和策略的同时,及时制定相应的研究规范、伦理指导原则和相应的法律、法规,并辅以可落实的管理规章与监管办法。 人类数百万年对于生命的探索,经过最近两个多世纪的三次革命,才达到了“合成生物学”的高度,形成了工程化的能力。然而,这只是“万里长征第一步”。用好合成生物学的“利器”,为实现建设社会主义现代化强国的理想作出贡献,还需要投入大量心血,提升知识、创新技术、踏实转化、服务需求。中国科学工作者对此责无旁贷。 (作者为中国科学院院士、中国科学院合成生物学重点实验室专家委员会主任)
  • 《为什么碳回收可能是合成生物学的最高成就》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-07-01
    • 地球正在升温。 去年,37.1千兆吨的二氧化碳被释放到大气中。每秒产生240万磅(或110万公斤)。虽然二氧化碳的升温潜能远远超过甲烷和碳氟化合物衍生物等其他化合物,但排放的碳量仍然令人不安。 偶然,碳也是生物学的关键。将简单的碳分子(如二氧化碳)转化为多碳化合物是生命,新陈代谢和进化的核心。在工业中,排放的碳气也可用于生产化学产品,而不是来自化石燃料和精炼石油。 然而,碳固定并不容易,解决这个问题需要大量投资,密集的生物学研究和创新方法。例如,低大气浓度的温室气体使它们极难捕获和再循环。二氧化碳在大气中仅占大约百万分之405,甲烷占百万分之二。 尽管大气中温室气体浓度较低,但自养生物 - 如漂浮在世界海洋中的大片蓝藻 - 可以利用阳光有效地将二氧化碳转化为食物和氧气。然而,固定碳的天然代谢途径通常依赖于缓慢或低效的酶,如RuBisCO。此外,生物学家对即使是最简单的生物体的基因和相互作用的蛋白质网络也有不完全的理解,混淆了我们重新接触新陈代谢以增强碳固定的能力。 尽管存在这些障碍,但仍然不能持续依赖石化产品,迫切需要一种通往碳基产品的新途径。合成生物学在这里有所帮助。 带垃圾,带现金 许多公司已经开始通过重新布线微生物代谢来将温室气体转化为生物燃料和塑料。几乎在所有情况下,工厂或垃圾填埋场排放的“废物”气体都被用作碳源。 总部位于伊利诺伊州Skokie的LanzaTech将工厂排放的废弃一氧化碳转化为乙醇,很快将其他化学品转化为乙醇。 SynBioBeta的撰稿人EmiliaDíaz之前曾撰写有关LanzaTech快速增长和基因工程套件的文章。 LanzaTech已经在商业规模生产乙醇超过一年,在中国运营的气体发酵设施和加利福尼亚州,比利时,印度和南非正在建设的其他设施。他们每年将通过碳废物生产约7700万加仑的乙醇。 根据LanzaTech的首席科学官兼联合创始人Sean Simpson博士的说法,工程微生物特别适合碳转化,因为“化学方法需要非常固定比例的气流,因此[碳源]不仅必须非常固定,但也要确定对所需产品的选择性。“ 基本上,在生物学进入聚光灯之前,碳废物排放的不可预测性是一个问题。 “有了生物学,你就拥有了一种能够吸收高度可变入口气体的催化剂,这是你从生物质废物或工业过程产生的废物流中获得的......并且可以将可变气体转化为高产量的单一产品选择性,“辛普森说。 但工厂排放并不是合成生物学公司旨在获取利润的唯一可行的碳源。其他人正在从农场和垃圾填埋场吸收碳并用它来制造燃料或塑料。 几乎所有地球上的塑料都是用石油制成的,但总部位于加利福尼亚的Newlight Technologies公司旨在改变这一点。他们使用垃圾填埋场甲烷生产一种名为AirCarbon的塑料。该方法包括将甲烷与空气混合并将其转化为液体,然后将其加入微生物中。微生物产生的生物聚合物可以熔化以制造塑料产品,包括手机壳和椅子。 近年来,Newlight与包括宜家和维玛在内的大型塑料经销商合作,并宣布了快速扩大生产规模的计划。由于Newlight希望减少碳排放,同时提供更环保的塑料替代品,因此正在建设年产量达3亿和6亿磅的生产设施。 尽管人们对碳回收持续存在兴趣,但仍有许多障碍需要克服。工业界越来越多地建立学术伙伴关系,以追求冒险的想法,并开发出现成的碳回收解决方案。 学术界推动碳回收 为巩固学术关系,一些公司在财务上支持合成生物学的学术研究。 Ingenza和Sasol UK之前与Dundee大学的Frank Sargent教授合作开发了一种捕获和回收废二氧化碳的方法。发表在Current Biology上的合作结果表明,大肠杆菌可以将100%的气态CO2转化为甲酸,并使用一种叫做甲酸氢化酶或FHL的酶。 现在,Ingenza正在推动该项目的发展,旨在利用该技术捕获和回收发酵过程中的碳废物,同时生产化学品。 Ingenza已经成功地利用发酵,蛋白质工程和合成生物学来设计细胞,用于大规模生产抗生素和化学品以保护作物。 但要应对像全球碳排放这样巨大的挑战 - 并在减少它们方面做出真正的努力 - 学术界必须超越模式生物,如大肠杆菌,寻求答案。 伦敦帝国理工学院代谢工程小组组长Patrik Jones博士知道,天然碳固定过程存在严重的局限性,但他们相信合成生物学可以产生相当大的影响,并且可以更好地理解生物学。他的团队的目标是开发“可以增强人类活动可持续性的全新概念”。 通过研究和设计自养生物,特别是最初在淡水池中发现的蓝藻菌株,琼斯集团已经成功地从光合作用中生产出脂肪酸,醇,烷烃和烯烃。他们还“挖掘”了这种蓝细菌的基因组,以更好地了解其代谢网络。尽管做了这些努力,生物学并不容易揭示它的秘密,并且生物体并不总是适合遗传“重新布线”。 琼斯表示,“我们在扩大工程自养系统方面面临着重大挑战,但最近我觉得我们正在逐步集体,在解决一些关键挑战方面取得进展,例如污染和遗传稳定性。”琼斯还解释说为了改善碳固定以改善人类活动,科学家们首先要弄清楚如何提高碳固定的总体速度。 位于德国马尔堡郊区的另一个学术实验室旨在实现这一目标。 “从生物化学的角度来看,RuBisCO已发展到一定的最佳状态,但它不能再进一步发展,”马克斯普朗克陆地微生物研究所所长Tobias Erb教授说。 “RuBisCO可以修复二氧化碳,它可以很快,但会产生很多错误,或者它可以准确,但效果很慢,”Erb说。尽管RuBisCO在植物和许多光合生物中无处不在,但它作为一种酶有点令人失望。它经常“错误地”与氧气结合,而不是二氧化碳,这会降低其效率。 然而,Erb看到了自然界的潜力,并认为合成生物学可用于改善像RuBisCO这样的酶。 “我们希望从大自然中学习,然后运用知识开发解决方案,”Erb说,他的实验室以挖掘生物基因组和开发新酶以克服碳固定限制而闻名。 2016年,Erb的研究小组发表了第一个用于体外固定二氧化碳的全合成代谢途径。合成途径称为CETCH,由来自9种不同生物的17种不同酶组成,包括3种工程酶。值得注意的是,它比一些天然碳固定途径的效率提高了五倍,并且对氧气完全不敏感。 虽然将这种途径整合到活细胞中更具挑战性,但Erb认为,随着技术的进一步发展,合成碳固定途径有朝一日可能会在体内实施。 凭借自然界的灵感,合成生物学为碳回收提供解决方案。但是工作还有待完成,未来将建立在生物学的支柱上,而不是机会。 生物学理解是未来的支柱 随着科学家们探索分子世界以寻找巨大问题的答案,生物学仍然不愿意分享它的秘密。琼斯知道还有很多基础工作,合成生物学尚不清楚。 “总的来说,我们的主要限制是理解。生物学很复杂,虽然我们认为我们了解大多数基因在模式生物体中的作用,但这仍然让我们面临着理解他们共同贡献的网络的挑战,“他说。 然而,随着LanzaTech,Newlight和Ingenza等公司将碳回收规模扩大,Jones和Erb等学者在开发新的合成生物工具方面向前推进,碳排放量可能会大幅减少。 在许多方面,人类碳排放是地球有史以来面临的最大挑战。减少我们足迹的解决方案将是合成生物学的最高成就。 ——文章发布于2019年6月25日