《中国科学院生物可降解地膜降解机制方面取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2021-11-22
  • 理论上,生物可降解地膜可被土壤微生物降解,最终生成二氧化碳和水,不会对土壤生态环境造成危害,但是,在实际环境中生物可降解地膜的降解往往受到聚合物类型、土壤性质及其他环境条件的影响,很难在预期的时间内完全降解。研究生物可降解地膜的微生物降解已经成为全球环境科学研究领域的国际前沿。

    探讨土壤中生物可降解地膜的微生物组转化潜能与降解机制对评估生物可降解地膜的生态安全性和区域适应性具有重要的现实意义,对于发展土壤地膜残留污染治理修复技术具有重要的科学指导意义。

    中国科学院南京土壤研究所研究员滕应课题组以生物可降解地膜普遍应用的聚酯材料聚己二酸/对苯二甲酸丁二醇酯(PBAT)为对象,采用微宇宙培养试验,明确了我国四大设施农区典型类型土壤对PBAT的降解潜能,利用宏基因组测序技术系统研究了土壤中PBAT的降解潜能与微生物群落变化和PBAT降解关键基因的关系。

    结果表明,不同类型土壤对 PBAT 的降解能力存在显著差异,西北塿土对PBAT的降解能力最强,华北潮土次之,南方红壤与东北黑土无明显降解能力,埋藏120天,PBAT的矿化率分别为16%,9%,0.3%,0.9%;四种土壤的微生物群落存在显著差异,且降解能力较强的塿土中微生物群落对PBAT的响应比其他三种土壤强烈;塿土中PBAT水解酶基因在PBAT薄膜表面显著富集,而在其他三种土壤中这类基因无明显变化;PBAT薄膜表面富集的潜在PBAT降解菌群的富集程度与土壤中PBAT降解能力呈显著地正相关关系。

    该研究揭示了PBAT降解菌群富集程度和PBAT降解关键基因丰度是引起不同类型土壤对PBAT降解能力差异的关键驱动力,解析了土壤中可降解农膜的微生物组降解机制,研究结果为发展土壤农膜污染生物学控制技术提供了新思路。

    该研究成果发表在Environmental Science & Technology上。研究工作得到了国家重点研发计划(2019YFC1803705)和国家自然科学基金(41991335)等项目的资助

相关报告
  • 《南京土壤所在土壤自然微生物组降解机制方面取得进展》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2020-09-10
    • 土壤自然微生物组具有高度的结构复杂性、代谢多样性和抗环境干扰性,因而它具有迅速调节自身结构来响应和适应复杂环境变化的能力,从而实现单一菌株难以完成或无法完成的环境功能。土壤自然微生物组是环境生物修复的重要资源,它能够直接参与持久性有机污染物的降解(如多环芳烃、多氯联苯等)。因此,如何挖掘土壤自然微生物组的环境修复功能,是当前生物修复领域的研究前沿和热点。 中国科学院南京土壤研究所研究员滕应课题组最新发表在Science of the Total Environment期刊上的论文提出了基于土壤自然微生物群落构建复合微生物组的生物修复策略,可用于高分子量多环芳烃污染土壤的生物修复。该研究将环境功能强(芘降解能力)的水稻土自然微生物群落引入到功能较弱的红壤中,使不同微生物成员相互接触,通过直接或间接生物信息交流,构建出新的相互作用关系网络(包括微生物之间、微生物与环境之间),从而形成稳态的土壤自然复合微生物组,并显著促进土壤中多环芳烃芘的生物降解。研究结果为多环芳烃污染土壤微生物修复提供了新思路、新方法。 吴晓燕 摘编自http://www.cas.cn/syky/201807/t20180705_4657249.shtml 原文标题:南京土壤所在多环芳烃污染土壤自然复合微生物组降解机制方面取得进展
  • 《清华大学在生物可降解电池方面取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-27
    • 清华大学材料学院尹斓课题组在《SMALL》期刊发表题为“一种用于植入式瞬态电子器件的可降解电池(A fully biodegradable battery for self-powered transient implant”的研究论文。这项工作不仅在可降解电池领域提出了新的材料选择和制备方案,实现了高性能、完全生物可降解的电池,同时通过电池测试、电化学分析、体内外降解实验、功能电路模拟等实验设计,全面清晰地研究了此生物可降解电池在电学和生物医学方面的性质和应用潜力。   生物可降解器件主要指在生理或环境水溶液中具有可控降解能力的一类电子器件,是一种近年来备受关注的新兴技术产品,也可看做是“瞬态电子学”在生物环境领域的一个分支。器件的应用场景包括作为临时植入物执行传感和刺激功能,辅助伤口愈合、组织再生等重要的生物过程等;亦可作为具有生物降解性的电子系统,可以减少常规植入式器件潜在的风险和可能引起的慢性炎症,降低相关医疗成本。其他潜在应用还包括在环保、信息安全等领域的应用。   相较于无线传输及外接电源,具有独立供电能力和高能量密度的生物可降解电池是更适用于植入式器件的供能方案。通过稳定的电能供给,器件可以在生物体内实现自供电的诊断和治疗,使体内感应和刺激内持续更长时间以满足临床标准,并可在随后完全被吸收或生物降解。综上,可降解电池在体内应用具有非常特殊的意义,但迄今为止进展十分有限。        尹斓研究团队提出了一种全由可降解材料制备的电池,能够提供高稳定的输出电压以及理想的容量。该电池能够驱动典型的超低功耗电子设备。具有良好的生物相容性,在体内和体外均可完全降解。电池可以作为植入式电源,配合其它设备实现组织再生、手术前或手术后长时间监测。电极材料的选择和电池的制备为植入式设备的能量供应提供了一个合适的选择,并为完整的瞬态电子系统设计提供了重要方案。      尹斓研究团队长期从事可降解材料及电子的研究。除此之外,近期还报道过使用薄膜单晶硅材料作为可降解电子的防水封装材料,以极大延长可降解器件在体内的工作寿命,并基于此制备了可降解的皮层脑电图传感器,为解决可降解电子的封装难题提供了重要思路(ACS Nano, 2017, 11, 12562–12572, DOI: 10.1021/acsnano.7b06697)。   本文的通讯作者为清华大学材料学院助理教授尹斓,第一作者为清华大学2017级博士生黄雪莹,其他重要合作者包括清华大学材料学院赵凌云、伍晖副教授,清华大学电子工程系盛兴、张沕琳助理教授,中国科学技术大学高分子系徐航勋教授。本工作受到国家自然科学基金委以及国家“青年相关人才计划”项目的资助。《SMALL》德国Wiley出版社旗下期刊,该期刊目前影响因子为9.598,本文工作同时被选为当月期刊封面内页(Inside Front Cover)。