《实现光晶格高布洛赫能带中Feshbach分子的成像》

  • 来源专题:量子信息科技
  • 编译者: 于杰平
  • 发布时间:2023-04-25
  • 2023年3月20日自德国汉堡大学的科学家成功地对光晶格中高布洛赫能带超冷Feshbach分子的奇异二聚体进行了成像,有望为新形式超流的研究提供帮助。该成果于3月20日发表在《自然·物理学》杂志上。

     玻色-爱因斯坦凝聚(BEC)与巴丁-库珀-施里弗(BCS)超流是成对费米子系统基态的两个极限。量子气体系统为这两个极限之间的过渡行为(BEC-BCS交叉)提供了一个独特的实验平台。迄今为止,对这一过渡行为的研究往往集中在基于近谐波的光学势阱系统,而对光晶格中的BEC-BCS交叉行为的研究不仅稀少,而且往往受限于仅涉及局部s轨道的最低布洛赫带。


    这一研究成果有望为新形式超流的研究提供帮助。已经有研究表明,第二布洛赫带中的凝聚玻色原子具有手性,甚至可以拥有拓扑激发。如果使用由费米子原子组成的Feshbach分子来代替玻色子原子,就会出现一种极其有趣的新可能性:如果最初的正散射长度在Feshbach共振的帮助下被绝热地减谐到负值,那么吸引性结合的库珀对就会从排斥性结合的分子中产生。那么,具有超越传统BCS理论的奇异特性的新形式的超流就有望出现。

    论文链接:

    https://www.nature.com/articles/s41567-023-01994-9

    报道链接:

    https://www.physik.uni-hamburg.de/en/ilp/hemmerich/scientific-news/2023/imaging-exotic-dimers.html


相关报告
  • 《中国科大实现稳定度和不确定度均优于5E-18的锶原子光晶格钟》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-03-01
    • 中国科大潘建伟、陈宇翱、戴汉宁等组成的研究团队,成功研制了万秒稳定度和不确定度均优于5×10-18(相当于数十亿年的误差不超过一秒)锶原子光晶格钟。根据公开发表的数据,该系统不仅是当前国内综合指标最好的光钟,也使得我国成为继美国之后第二个达到上述综合指标的国家。该成果对未来实现远距离光钟比对、建立超高精度的光频标基准和全球性光钟网络奠定了重要的技术基础。相关成果于1月12日发表于国际计量领域重要学术期刊《计量学》。 目前,最先进的光钟比国际上用于秒定义的微波喷泉钟的精度高出了两个数量级以上。正是基于量子精密测量技术的发展,第二十七届国际计量大会通过了“关于秒的未来重新定义”的决议,计划于2026年提出关于利用光钟重新定义国际单位制(SI)“秒”的具体路线,并将在2030年做出最终决定。为了推动基于光钟的新一代秒定义,要求至少3个不同实验室的光钟不确定度优于2×10-18,并通过光学链路或移动光钟实现优于5×10-18的频率比对精度。 研究团队近年来在基于光晶格的超冷原子量子模拟方面开展了卓有成效的工作,已先后在《自然》和《科学》发表了9篇论文,为发展高精度的光晶格钟奠定了必要的技术基础。在该工作中,研究团队实现了锶原子(87Sr)的激光冷却,并将其束缚在长寿命的一维光晶格中,利用一束预先锁定到超稳腔的超稳激光来探寻锶原子钟态跃迁,并实现了光钟闭环运行。通过两套独立的锶原子光晶格钟(Sr 1和Sr 2)进行了频率比对测量,得到单套光钟的稳定度在10000秒积分时间被达到了4×10-18,在47000秒达到了2.1×10-18,整体达到了5.4×10-16/sqrt(τ),τ是积分测量的时间。在此基础上,研究团队还对Sr 1光钟的系统频移因素开展了逐项评定,最终得到其系统不确定度为4.4×10-18相当于72亿年仅偏差1秒。上述性能指标表明该光钟系统已部分满足“秒”重新定义的要求。 该研究工作提升了我国原子光频标的性能指标,结合潘建伟、张强、姜海峰、彭承志等前期实现的万秒稳定度优于4×10-19的百公里自由空间高精度时间频率传递 [Nature 610, 661 (2022)],为下一步建立远距离光钟比对(如 Sr/Yb, Sr/Ca+)奠定了坚实基础,对未来构建新一代全球时间基准乃至提供引力波探测、暗物质搜索的新方法等具有重要价值。 该研究工作得到了科技部、安徽省、上海市、自然科学基金委、中国科学院和新基石科学基金会等的资助。
  • 《铁磁性FePt纳米晶超晶格的制备及应用》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-03-09
    • 近几十年来,对纳米颗粒的实验兴趣一直保持着发展势头,科学家发现了有关其独特性质的更多信息,如何将其用于越来越多的应用中,并开发了生产这些颗粒的先进技术。 早在2000年,科学家就开发了一种生产铁磁FePt纳米晶超晶格的方法,该方法被认为对超高密度磁记录介质的未来应用具有很大的希望。 下面,我们讨论产生这些纳米晶体超晶格的方法以及它们当前的现代应用。 铁磁性FePt纳米晶超晶格是如何制成的? 来自纽约和加利福尼亚州沃森研究中心和阿尔玛登研究中心的科学家团队开发了一种通过还原乙酰丙酮铂并分解油酸和油胺稳定剂中的五羰基铁来合成铁-铂(FePt)纳米粒子的方法。据报道,该方法可产生具有可控尺寸和组成的FePt纳米粒子,以及具有可调粒子间间距的铁磁FePt纳米晶体超晶格。 首先,为了生产FePt纳米颗粒,该团队使用油酸和油胺来稳定和防止单分散FePt胶体的氧化。接下来,通过多元醇法将金属盐还原为金属颗粒。随后,Fe(CO)5热分解以生成Fe颗粒。这两个过程均在油酸和油胺的存在下进行,从而产生了单分散的FePt纳米颗粒。 该团队证明了所得的FePt纳米粒子可以很容易地控制。在控制羰基铁与铂盐的摩尔比时,研究人员表明可以调节组成。通过生长单分散种子颗粒并添加试剂以使种子生长至所需大小来更改粒度。最后,通过添加絮凝剂并离心将颗粒纯化和分离。 下一阶段是将FePt胶体分散到基质上,使溶剂蒸发,然后形成FePt纳米粒子超晶格。研究表明,生成的粒子是单分散的,很容易自组装成3D超晶格。 铁磁性FePt纳米晶超晶格的应用 一旦建立了创建铁磁性FePt纳米晶超晶格的方法,科学家就预见了它们在许多应用中的用途,特别是在光学和电子设备中。它们具有良好的化学稳定性和较大的单轴磁晶各向异性,可将其集成到永磁应用中。 它们具有随各向异性常数和颗粒体积成比例变化的单个颗粒的磁稳定性的特征,得出的结论是,这些颗粒可能会影响未来超高密度磁记录介质应用的发展。 然而,最近的研究强调了阻碍在磁记录中使用这些超晶格的问题。已经发现,FePt具有高矫顽力,大大超过了磁头材料限制的可用磁头的书写范围。因此,科学家们正在探索一种减少书写领域的方法来克服这一限制。 当前,最有前途的技术是在软磁相和硬磁相之间交换耦合。但是,要实现这一点,复合材料至少需要两个阶段。最近的研究在该领域取得了进展,最近几个月内发表了一些论文,这些论文展示了交换耦合并因此控制材料磁性能的可行方法。 该领域的进展很可能会使许多磁性应用受益,但是,实现这些应用可能需要花费几年的时间,在优化和准备方法之前还需要进行更多的研究。在研究环境之外使用。