We investigated the physiological changes in scallops (Chlamys farreri) during semi-anhydrous living-preservation using metabolomics method to obtain a guiding theory in optimizing the preservation conditions. Glycogen, lactic acid, and crude protein levels were measured in 1-day intervals for 6 days, the median lethal time.
The metabolite profiling of scallops after the preservation duration of 10% lethal time (3 days) was achieved based on methyl chloroformate derivation before GC-MS analysis. Carboxyl acids related to respiration (malic, fumaric, and succinic acids), fatty acids (C18:0, C16:0, and C22:6), and amino acids (phenylalanine, glutamic acid, aspartic acid, isoleucine, glycine, pyroglutamic acid, proline, leucine, and 2-aminoadipic acid) were identified as biomarkers. Our results demonstrated that scallops performed an elevated anaerobiosis and depressed aerobiosis, which were not caused by oxygen insufficiency. The switching of energy metabolism patterns and disorder of the osmotic regulation system were also observed, suggesting that oxygen supply is less important for optimizing semi-anhydrous living-preservation.