《BioRxiv,2月28日,Prediction of receptorome for human-infecting virome》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-02-29
  • Prediction of receptorome for human-infecting virome

    Zheng Zhang, Sifan Ye, Aiping Wu, Taijiao Jiang, Yousong Peng

    doi: https://doi.org/10.1101/2020.02.27.967885

    Abstract

    The virus receptor is key for viral infection of host cells. Identification of the virus receptor is still challenging at present. Our previous study has shown that human virus receptor proteins have some unique features including high level of N-glycosylation, high number of interaction partners and high expressions. Here, we built a random-forest model to identify human virus receptorome from human cell membrane proteins with accepted accuracy based on combination of unique features of human virus receptors and protein sequences. A total of 729 human cell membrane proteins were predicted to constitute the receptorome for the human-infecting virome. Combination of the random-forest model with protein-protein interactions between human and viruses predicted in previous studies further predicted receptors for 693 human-infecting viruses, such as the Enterovirus, Norovirus and West Nile virus. Finally, we predicted the candidate alternative receptors for the 2019-nCoV. The study would greatly facilitate identification of receptors for human-infecting virome.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.02.27.967885v1
相关报告
  • 《2月28日_人体感染病毒受体的预测》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-29
    • 信息名称:人体感染病毒受体的预测 1.时间:2020年2月28日 2.机构或团队:湖南大学医学病毒学湖南省重点实验室,中国医学科学院北京协和医学院基础医学研究所系统医学中心 3.事件概要: 湖南大学和中国医学科学院的科研人员在bioRxiv预印版平台发表论文“Prediction of receptorome for human-infecting virome”,利用随机森林模型预测人体感染病毒的受体。 文章指出,病毒受体是宿主细胞病毒感染的关键,目前,病毒受体的鉴定仍然具有挑战性。之前的研究表明,人类病毒受体蛋白具有一些独特的功能,包括高水平的N-糖基化、大量的相互作用对和高表达。在这里,科研人员建立了一个随机森林模型,根据人类病毒受体的独特特征和蛋白质序列,从人类细胞膜蛋白中识别人类病毒受体,并获得了公认的准确性,共729个人体细胞膜蛋白被预测为人感染病毒的受体组。结合随机森林模型与先前研究中预测的人类与病毒之间的蛋白质-蛋白质相互作用,进一步预测了693种人类感染病毒(如肠病毒、诺如病毒和西尼罗河病毒)的受体。最后,科研人员预测了2019-nCoV的候选替代受体,该研究将大大促进鉴定人类感染病毒的受体。 *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用. 4.附件: 原文链接: https://www.biorxiv.org/content/10.1101/2020.02.27.967885v1.full.pdf
  • 《BioRxiv,2月27日,Spike protein binding prediction with neutralizing antibodies of SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-02-28
    • Spike protein binding prediction with neutralizing antibodies of SARS-CoV-2 Tamina Park, Sang-Yeop Lee, Seil Kim, Mi Jeong Kim, Hong Gi Kim, Sangmi Jun, Seung Il Kim, Bum Tae Kim, Edmond Changkyun Park, Daeui Park doi: https://doi.org/10.1101/2020.02.22.951178 Abstract Coronavirus disease 2019 (COVID-19) is a new emerging human infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, also previously known as 2019-nCoV), originated in Wuhan seafood and animal market, China. Since December 2019, more than 69,000 cases of COVID-19 have been confirmed in China and quickly spreads to other counties. Currently, researchers put their best efforts to identify effective drugs for COVID-19. The neutralizing antibody, which binds to viral capsid in a manner that inhibits cellular entry of virus and uncoating of the genome, is the specific defense against viral invaders. In this study, we investigate to identify neutralizing antibodies that can bind to SARS-CoV-2 Sipke (S) protein and interfere with the interaction between viral S protein and a host receptor by bioinformatic methods. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.